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Résumé1

Nous présentons une amélioration du lemme de majoration de Diaconis, qui permet de
calculer la valeur limite de la distance à la stationnarité. Nous l’appliquons ensuite aux
transpositions aléatoires étudiées par Diaconis et Shahshahani.

Resumo

Ni prezentas plibonigon de la superbara lemo de Diaconis, kiu ebligas kalkuli la limesan
valoron de la distanco al staranteco. Ni poste aplikas ĝin al hazardaj 2-cikloj studitaj de
Diaconis kaj Shahshahani.

Abstract2

We present an improved version of Diaconis’ upper bound lemma, which is used to com-
pute the limiting value of the distance to stationarity. We then apply it to random
transpositions studied by Diaconis and Shahshahani.
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1 Enkonduko

1.1 Ĉefaj rezultoj

Estu Sn la simetria grupo kun indico n kaj Pn la probablo sur Sn difinita per

Pn(Id) =
1

n
kaj Pn(τ) =

2

n2
se τ estas 2-ciklo.

Ĝi estas la mikso per hazardaj 2-cikloj sur Sn, studita de Diaconis kaj Shahshahani en
[8].
Estu Un la uniforma probablo sur Sn. Se E estas aro kaj µ, ν estas probabloj sur E, ni
difinas la tutvarian distancon3 inter µ kaj ν per la formulo

dTV(µ, ν) =
1

2
d1(µ, ν) =

1

2

∑
x∈E

|µ(x)− ν(x)| .

En [8], Diaconis kaj Shahshahani montras ke estas sojla fenomeno (aŭ kutofo, el cutoff
anglalingve) ĉe 1

2
n log(n) por tiu hazarda promenado, t.e., se f(n) =

⌊
1
2
n log(n)

⌋
, ke por

ĉiu 0 < ε < 1,

dTV

(
P ∗(1−ε)f(n)
n , Un

)
−−−→
n→∞

1 kaj dTV

(
P ∗(1+ε)f(n)
n , Un

)
−−−→
n→∞

0.

Malgraŭ laborego realigita pri miksotempoj kaj pli speciale pri hazardaj 2-cikloj (vidu
la referencojn sube), obteni precizan priskribon de la transiro restis ĝis nun malfermita
problemo, formale proponita de Nathanaël Berestycki dum laborgrupo de AIM pri mar-
kovĉenaj miksotempoj en 2016 (http://aimpl.org/markovmixing/5/).
Jen nia ĉefa rezulto :

Teoremo 1.1. Estu c ∈ R. Tiam ni havas :

dTV

(
P
∗b 12n log(n)+cnc
n , Un

)
−−−→
n→∞

dTV

(
Poiss

(
1 + e−2c

)
,Poiss(1)

)
,

kie Poiss(a) almontras la leĝon de Poisson kun parametro a.

3En la pruvoj ni uzos la distancon L1, notaciitan d1, por malpeziĝi je la faktoro 1
2 .
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Limesprofilaj konjektoj
Ni antaŭvidas ke la limesa profilo dTV (Poiss (1 + e−c) ,Poiss(1)), kiun ni obtenas tie se
ni anstataŭigas la tempon

⌊
1
2
n log(n) + cn

⌋
per pli natura tempo,

⌊
1
2
(n log(n) + cn)

⌋
,

aperos por multaj aliaj miksotempaj problemoj sur Sn, t.e. la problemoj kie la lastaj
miksitâoj estas la fiksaj punktoj. Ŝajnas ke tiu propreco ofte aperas kiam la probablo
Pn estas konstanta sur konjugklasoj. Ekzemple, uzante la rezultojn el [10], ni povas
adapti nian pruvon al hazardaj k-cikloj (k fiksita) je la tempo

⌊
1
k
(n log(n) + cn)

⌋
, kaj ni

konjektas ke ni ankoraŭ havos la saman limesan profilon por la hazardaj konjugklasoj kun
kardinalo o(n), studitaj en [3], sed ke estus teknike multe pli malfacile adapti nian pruvon
tiukaze. Por tiu ĝenerala kazo, tre bela formulo (Propozicio 10.15 en [16]), uzita por pruvi
la formulon de Stanley-Féray, kaj kiu ebligas esprimi ĉiujn reduktitajn karakterojn per
ekspekto, χλ(µ) = E

[
(−1)inv(σµ)

]
, certe tre utilos.

Ni konjektas ke tiu profilo ankaŭ estos la bona profilo por la mikso per hazardaj involucioj
studita de Megan Bernstein en [4], je la tempo

⌊
1

log(p)
(log(n) + c)

⌋
. Por legi pri aliaj

konataj limesaj profiloj, vidu [1] kaj [12].

1.2 Ligoj kun antaŭaj rezultoj kaj ideo de la pruvo

Ligoj kun antaŭaj rezultoj En 1981, Diaconis kaj Shahshahani montris en [8], uzante
la reprezentoj de la simetria grupo, kutofon4 ĉe

⌊
1
2
n log(n)

⌋
por la mikso per hazardaj

2-cikloj, donante asimptotajn neegalâojn je la tempo
⌊

1
2
n log(n) + cn

⌋
, c > 0 fiksita. En

1987, Matthews, en [15], rafinis tiujn rezultojn dank’ al probableca pruvo. En 2011, Bere-
stycki, Schramm kaj Zeitouni ĝeneraligis en [2] la antaŭan rezulton al mikso per hazardaj
k-cikloj, por k fiksita kiam n → ∞, tiel pruvante kutofon ĉe

⌊
1
k
n log(n)

⌋
, konjektita de

Diaconis. Fine, en 2014, Berestycki kaj Şengül ĝeneraligis denove tiun rezulton en [3], al
ajna konjugklaso kies subtenanto havas kardinalon o(n), kaj tio sen grupreprezentoj.
La pruvo en [8] baziĝas sur la fama superbara lemo de Diaconis, kiu kondukas al
sumo sur la neredukteblaj reprezentoj kiun ili delikate superbaras per reprezentoj kaj
analizo. Fakte, oni povas observi ke la nura loko kie multa informo (ni perdas faktoron
e en la limeso c → ∞ de la limesa profilo) estas perdita pri la limesa profilo estas je la
ekkomenco, kiam la neegalâo de Cauchy-Schwarz estas uzata en la pruvo de la superbara
lemo. La sekcio 2 proponas rimedon por tiu informoperdo, plibonigante la superbaran le-
mon ĝis aproksimiga lemo (lemo 2.1), kiu asimptote estas multe pli preciza. La subsekcio
4.1, iom teknika, ĝeneraligas la asimptotajn superbarojn de Diaconis kaj Shahshahani al
ajna c ∈ R.
Alia kerna punkto de nia pruvo estas kungrupigi, en la sumoj sur la neredukteblaj re-
prezentoj λ = (λ1, ...) de Sn, ĉiujn dispartigojn havantajn la saman λ1. Pli precize, La
subsekcio 4.2 montras ke se ni fiksas j ∈ N∗, ni povas studi la sumon sur la dispartigoj
kie λ1 valoras n− j kiel sumo sur la dispartigoj de la entjero j, kio donas eksplicitajn kaj
facile manipuleblajn formulojn.
Por kompreni el kie la limesa profilo venas, ni observu ke, dank’ al la subbaro de Matt-
hews, la ŝlosila observeblo estas la nombro de fiksaj punktoj. La limesa profilo estas
la distanco inter la asimptota distribucio de la nombro de fiksaj punktoj je la tempo⌊

1
2
n log(n) + cn

⌋
, Poiss (1 + e−2c), kaj tiu de hazarda permuto, Poiss(1).

4Fakte ilia subbaro estas 1/e do ĝi ne ekzakte estas kutofo.
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La ĉi-supre eldirita teoremo 1.1 subportas konjekton de Nathanaël Berestycki :

Konjekto 1.2. Estu τn la unua tempo kiam ĉiuj kartoj estas tuŝitaj, kaj Xτn la stato de
la kartaro je tiu (hazarda) tempo. Tiam dTV(Xτn , Un)→ 0 kiam n→∞.

Alivorte, la konjekto diras ke τn estas haltotempo je kiu la hazarda permuto estas bone
miksita por ĉiaj praktikaj celoj. Notu ke je la tempo τn−1, la permuto havas almenaŭ unu
fikspunkton, kaj do ke dTV(Xτn−1, Un) ne povas strebi al nul. Tiel, la konjekto implicas
ke τn estas fortsence optimuma por miksi la kartaron.
Ni nun klarigos kiamaniere la ĉi-supra teoremo 1.1 estas ligita kun tiu konjekto. Por ĉiu
tempo t, estu Gt la hazarda grafeo kiu enhavas edĝon (i, j) se kaj nur se la kunligita
2-ciklo estis aplikata almenaŭ unufoje antaŭ la tempo t. Tiam Gt esence estas la realigo
de la hazarda grafeo de Erdős–Rényi kun parametroj n kaj p = 1 − exp(−t/

(
n
2

)
). Eblas

facile kontroli ke ĉiu ciklo de la hazarda permuto Xt je la tempo t estas, kiel aro, subaro
de koneksa komponanto de Gt. Estas do nature konsideri la ciklan faktorigon de la
permuto malvastigita al aparta koneksa komponanto de Gt. Estu Ct la plej granda
komponanto de Gt (kiu estas makroskopa se t ≥ cn por iu c > 1, kaj enhavas ĉiujn
verticojn kun alta probablo post la tempo τn). Ct nomiĝas la giganta komponanto de
Gt. Laŭ fama rezulto de Schramm [18], la distribuo de la longo de la plej longaj cikloj
de Xt ene de Ct, normigita per la tuta grando |Ct| de la giganta komponanto, strebas al
distribuo de Poisson–Dirichlet (laŭ la senco de finidimensiaj distribuoj). Sekve ni povas
vidi ke la plej longaj cikloj limese koincidas kun la distribuo de hazarda permuto en la
giganta komponanto (vidu ekzemple [2]). Pli forta versio de la teoremo de Schramm estus
la sekva (ankaŭ de Nathanaël Berestycki) :

Konjekto 1.3. Supozu ke t ≥ cn/2 por iu c > 1. Por ĉiu Ct, la distribuo de Xt|Ct estas
proksimume uniforma, en la senco ke dTV(Xt|Ct , UCt) → 0 probablece, kiam n → ∞, kie
UCt almontras la uniforman permuton sur la giganta komponanto Ct.

Ne malfacilas montri ke la konjekto 1.3 implicas la konjekton 1.2. Efektive, la konjekto
1.3 tre precize priskribas la strukturon deXt najbare de la miksotempo : se t = b1

2
n log n+

cnc, tiam laŭ tiu konjekto, se τn > t, Xt konsistus el proksimume uniforma permuto sur
n− 1 punktoj, kaj unu kroma fiksopunkto ; kaj se τn ≥ t, Xt esence estus nedistingebla
de hazarda permuto. Tia priskribo implicus ke

dTV(Xt, Un) = dTV(Fix(Xt),Poiss(1)) + o(1),

kie Fix(Xt) estas la nombro de fikspunktoj de Xt. Krome, estas relative facile kontroli
ke P(τn > t)→ e−2c kaj do, ankoraŭ supozante la konjekton 1.3, ni povus dedukti ke

dTV(Xt, Un) = dTV(Poiss(1 + e−2c),Poiss(1)) + o(1),

kie la kroma dekstroflanka termo e−2c precize respondas al la probablo P(τn > t). Tiu
lasta egalâo ekzakte estas nia teoremo 1.1.
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Strukturo de la artikolo En la sekcio 2, ni prezentos la plibonigon de la superbara
lemo de Diaconis, uzante la nekomutecan transformon de Fourier, kiu rekondukas nin al
grupreprezentoj. En la sekcio 3, ni faros kelkajn rememorigojn pri la grupreprezentoj de
la simetria grupo, ni montros precizajn estimojn de la kombinatorikaj formuloj hoklonga
kaj de Murnagham-Nakayama kiam la grando n de niaj dispartigoj strebas al infinito
dum n − λ1 restas konstanta, kaj ni pruvos kelkajn superbarojn kiuj poste utilos. En
la sekcio 4, ni pruvos la eldiritan teoremon, aproksimâo post aproksimâo. En la tuta
sekvo, k neambigue almontros la entjeron

k = k(n, c) =

⌊
1

2
n log(n) + cn

⌋
.

Ideo de la pruvo La algebraj objektoj Ŝn, triv, dλ, sλ kaj chλ estos difinitaj je la
komenco de la sekcio 2. Por ĉiu σ ∈ Sn, Fix(σ) almontros la nombron de fikspunktoj de
la permuto σ. Por j ∈ N∗, ni difinas la polinomon Tj(z) per la formulo

∑j
i=0

(
z
j−i

) (−1)i

i!
.

La ideo estas unue fiksi reelon c ∈ R, kaj poste difini por ĉiu ε > 0 entjeron M = M(c, ε)
tia ke kiam n strebas al infinito, ĉiuj sekvaj aproksimâoj veru je ε.
Reskribante la sumon dank’ al la transformo de Fourier kaj la plibonigon de la lemo de
Diaconis,

d1
(
P ∗kn , Un

)
=

1

|Sn|
∑
σ∈Sn

∣∣∣∣ ∑
λ∈Ŝn\{triv}

dλs
k
λch

λ(σ)

∣∣∣∣ ≈ 1

n!

∑
σ∈Sn

∣∣∣∣ ∑
λ1≥n−M

dλs
k
λch

λ(σ)

∣∣∣∣.
Poste, pro la lemo de polinoma konverĝo kaj lasante M →∞, ni obtenos

1

n!

∑
σ∈Sn

∣∣∣∣ ∑
λ1≥n−M

dλs
k
λch

λ(σ)

∣∣∣∣ ≈ 1

n!

∑
σ∈Sn

∣∣∣∣ M∑
j=1

e−2jcTj(Fix(σ))

∣∣∣∣ ≈ 1

n!

∑
σ∈Sn

∣∣∣∣ ∞∑
j=1

e−2jcTj(Fix(σ))

∣∣∣∣.
Fine, strebigante n al infinito,

1

n!

∑
σ∈Sn

∣∣∣∣ ∞∑
j=1

e−2jcTj(Fix(σ))

∣∣∣∣ =
1

n!

∑
σ∈Sn

∣∣∣∣e−e−2c (
1 + e−2c

)Fix(σ) − 1

∣∣∣∣
≈ E

∣∣∣∣e−e−2c (
1 + e−2c

)Poiss(1) − 1

∣∣∣∣
= d1

(
Poiss

(
1 + e−2c

)
,Poiss(1)

)
.

2 Plibonigo de la superbara lemo de Diaconis
En tiu sekcio ni prezentas la plibonigon de la superbara lemo de Diaconis. Ni metiĝos
en la kadro de finiaj grupoj, sed tiu lemo povas senprobleme esti uzata en pli ĝenerala
kadro, por kompaktaj grupoj ekzemple. Nia celo estas obteni pli bonan aproksimâon ol
en [8], sen uzi Cauchy-Schwarz antaŭ ol Fourier.
Estu G finia grupo, CG la algebro de la grupo G kaj Ĝ la aro de la neredukteblaj
reprezentoj de G. Ni notaciu triv la trivialan reprezenton de G kaj Ĝ∗ = Ĝ\ {triv}. Por
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α ∈ Ĝ, Ni ankaŭ notaciu ρα la matricon de la reprezento α, chα ĝia karaktero kaj dα ĝia
dimensio. Ni unue rememorigu la inversan formulon por la nekomuteca transformo de
Fourier, bone klarigita en [16]. Por f : G→ C kaj g ∈ G, ni havas

f(g) =
∑
α∈Ĝ

dα
|G|

Tr(ρα(g)∗f̂(α)).

Ni deduktas el tio ke por ĉiu t ∈ N,

d1
(
P ∗t, U

)
=
∑
g∈G

∣∣P ∗t(g)− U(g)
∣∣

=
∑
g∈G

∣∣∣∣∑
α∈Ĝ

dα
|G|

Tr( ̂(P ∗t − U)(α)ρα(g)∗)

∣∣∣∣
=
∑
g∈G

∣∣∣∣∑
α∈Ĝ∗

dα
|G|

Tr(P̂ ∗t(α)ρα(g)∗)

∣∣∣∣.
Aldone, ĉar P estas funkcio konstanta sur ĉiu konjugklaso, ni scias per la lemo de Schur
ke por ĉiu α, P̂ (α) estas homotetio, kun rilato sα = Tr(P̂ (α))

dα
. Ni do obtenas ke :

d1
(
P ∗t, U

)
=

1

|G|
∑
g∈G

∣∣∣∣∑
α∈Ĝ∗

dαs
t
αch

α(g)

∣∣∣∣.
Nun, se anstataŭ havi unu grupon G, ni havas kreskantan vicon de grupoj (Gn)n∈N,

ĉiu grupo garnita per probablo Pn, kaj se t = t(n) estas bone elektita tempo kiu dependas
je n (kaj eventuale je aliaj parametroj), ni strebigemos n al infinito ene de niaj sumoj, por
tiel obteni konverĝon al eksplicita formulo kiu pruvos kutofon aŭ donos limesan profilon.
La ideo de la sekva lemo estas lokalizi finian aron de neredukteblaj reprezentoj kiuj havos
plejparton de la maso (asimptote), por povi aproksimi, uniforme je n, la sumon sur ĉiuj
neredukteblaj reprezentoj per finia sumo, kaj poste ebli preni la limeson je n en la finiaj
sumoj.

Lemo 2.1. (Aproksimâa lemo) Estu G finia grupo, P probablo sur G konstanta sur
ĉiu konjugklaso, kaj S ⊂ Ĝ∗. Tiam :∣∣∣∣∣d1

(
P ∗t, U

)
− 1

|G|
∑
g∈G

∣∣∣∣∑
α∈S

dαs
t
αch

α(g)

∣∣∣∣
∣∣∣∣∣ ≤ ∑

α∈Ĝ∗\S

dα |sα|t .
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Pruvo Uzante ke
∣∣∣|a| − |b|∣∣∣ ≤ |a− b| kaj per triangulaj neegalâoj,∣∣∣∣∣d1

(
P ∗t, U

)
− 1

|G|
∑
g∈G

∣∣∣∣∑
α∈S

dαs
t
αch

α(g)

∣∣∣∣
∣∣∣∣∣

≤ 1

|G|
∑
g∈G

∣∣∣∣ ∑
α∈Ĝ\S

dαs
t
αch

α(g)

∣∣∣∣
≤ 1

|G|
∑
g∈G

∑
α∈Ĝ\S

dα |sα|t |chα(g)|

=
∑
α∈Ĝ\S

dα |sα|t
1

|G|
∑
g∈G

|chα(g)| . (∗)

Nun, por ĉiu nereduktebla karaktero α, per la neegalâo de Cauchy-Schwarz kaj karaktera
ortonormeco,

1

|G|
∑
g∈G

|chα(g)| ≤ 1

|G|

√
|G|
∑
g∈G

|chα(g)|2 = 1.

Injektante en (∗), tio konkludas la pruvon.

3 La simetria grupo kaj ĝiaj reprezentoj

3.1 Hoklonga formulo

Ni rememorigu kelkajn rezultojn el la teorio de la reprezentoj de la simetria grupo, re-
prezentoj kiujn ni nature indeksos per entjeraj dispartigoj, notaciitaj λ. En diagramo
asociita al dispartigo, la hoklongo de iu ĉelo estas la nombro de ĉeloj situantaj supre aŭ
dekstre de nia ĉelo. Ni notacios équ(λ) la produkton de la hoklongoj de la dispartigo λ.
Ekzemple, jen la dispartigo λ = (7, 3, 2, 1, 1) de la entjero 14 kaj ĝiaj hoklongoj :

12346811

136

14

2

1

.

En tiu kazo, ni havas :

équ(7, 3, 2, 1, 1) = 11×8×6×(4×3×2×1)×(6×3×1×4×1×2×1) = 11×8×6×4!×équ(3, 2, 1, 1).

Ni nun rememorigos la hoklongan formulo, kies pruvo troveblas en la ĉapitro 3 de [16].

Propozicio 3.1. (Hoklonga formulo) Se λ estas dispartigo de iu entjero n, tiam dλ =
n!

équ(λ)
. Aparte, d(n−j,λ2,λ3,...) ≤

(
n
j

)
d(λ2,λ3,...).
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Se λ = (λ1, λ2, λ3, ...) estas dispartigo, ni notacios λ∗ la tranĉitan dispartigon (λ2, λ3, λ4, ...),
en kiu la plej longa linio estis tranĉita. Ekzemple, se λ = (n−7, 3, 2, 1, 1), λ∗ = (3, 2, 1, 1)
kaj tiukaze ni havas kiam n→∞,

dλ =
n!

(n− 7 + 4)(n− 8 + 2)(n− 9 + 1)(n− 10)!

1

équ(λ∗)
=

n!

(n− 7)! équ(λ∗)

(
1− 7

n
+O

(
1

n2

))
.

Tio facile ĝeneraliĝas por doni la sekvan asimptotan formulon :

Propozicio 3.2. (Asimptota hoklonga formulo) Estu j ≥ 1 kaj λ2, λ3, ... fiksitaj
entjeroj tiaj ke λ2 + λ3 + ... = j. Tiam, kiam n→∞,

d(n−j,λ2,λ3,...) =

(
n

j

)
d(λ2,λ3,...)

(
1− j

n
+O

(
1

n2

))
.

Pruvo Estu n ∈ N∗ kaj λ = λ(n) = (n− j, λ2, λ3, ...). Tiam, kiam n→∞, notaciante
λ∗
′ la konjugitan dispartigon de la dispartigo λ∗ = (λ2, λ3, ...),

d(n−j,λ2,λ3,...) =
n!

(n− j + λ∗
′

1 )(n− j − 1 + λ∗
′

2 )...(n− 2j + 1 + λ∗
′
j )

1

équ(λ2, λ3, ...)

=
n!

(n− j)! équ(λ2, λ3, ...)

n− j
n− j + λ∗

′
1

n− j − 1

n− j − 1 + λ∗
′

2

...
n− 2j + 1

n− 2j + 1 + λ∗
′
j

=
n!

(n− j)! équ(λ2, λ3, ...)

(
1− λ∗

′
1

n
+O

(
1

n2

))
...

(
1−

λ∗
′
j

n
+O

(
1

n2

))

=

(
n

j

)
d(λ2,λ3,...)

(
1− j

n
+O

(
1

n2

))
.

Rimarko 3.3. Ni fakte nur bezonos la ekvivalenton, sed la termo kun − j
n
ebligas akiri

pli bonan intuon pri la karakteraj rilatoj prezentotaj en la sekva subsekcio.

3.2 Karakteraj rilatoj

Estu τ 2-ciklo. Ni difinas, kiel en [8] la karakteran rilaton r(λ) = chλ(τ)
dλ

. Eblas doni diver-
sajn eksplicitajn formulojn por tiu objekto, inter kiuj la sekvan, simetrian, kiu elsekvas
el la lemo 7.14 en [16].
Se λ = (λ1, λ2, ..., λn) estas dispartigo de la entjero n, tiam ni havas :

r(λ) =
1(
n
2

) n∑
i=1

(
λi
2

)
−
(
λ′i
2

)
.

La modifita karaktera rilato, difinita en la sekcio 2, skribiĝas sλ = 1
n

+ n−1
n
r(λ) kaj

ni enkalkulas ke ni elektas la identecon kun probablo 1/n. La superbaroj de la sekva
propozicio elvenas el [7].

Propozicio 3.4. Se λ estas dispartigo de la entjero n, tiam

sλ ≤
λ1

n
kaj |r(λ)| ≤ λ1

n
.

8



Se plie λ1 ≥ n
2
, tiam

sλ ≤ 1− 2(λ1 + 1)(n− λ1)

n2
.

Ni ankaŭ bezonos asimptotan disvolviĝon de sλ, facile akireblan dank’ al la eksplicita
formulo de r(λ) : Se j ∈ N∗ kaj λ2 ≥ λ3 ≥ ... ≥ λr estas pozitivaj entjeroj tiaj ke
λ2 + ...+ λr = j, tiam, kiam n→∞,

r(n− j, λ2, ..., λr) =
1(
n
2

) ((n− j
2

)
+O(1)

)
= 1− 2j

n
+O

(
1

n2

)
,

kaj do

sλ = 1− 2j

n
+O

(
1

n2

)
.

Rimarko 3.5. En la ĝenerala kazo, por diveni kutofon, ni deziras trovi t = t(n) por kiu
dα |sα|t = θ(1) kiam n→∞, por la reprezentoj α kiuj havas la plej grandan mason. En
la kazo de la simetria grupo, ĉar dλ ≈ nj, ni volas trovi t tia ke |sλ|t ≈ n−j. Ekzemple,
por la hazardaj 2-cikloj, estas tre nature antaŭvidi kutofon je 1

2
n log(n), el la formulo de

sλ, ĉar
(
1− 2j

n

) 1
2
n log(n) ≈ n−j.

3.3 Transigo de maso en la grafeo de Young

Estos praktike uzi la formalismon de la grafeo de Young por iuj kalkuloj. Ni tie studos,
en la grafeo de Young, transigon de mezuro de unu linio al la sekva, kiu povas esti indukte
etendita al pluraj linioj. Ni skribos λ ` m por iu m ≥ 1 por indiki ke λ estas dispartigo
de la entjero m. Ni ankaŭ skribos λ↗ Λ se λ ` m kaj Λ ` m+ 1 por diri ke la diagramo
de Λ obteniĝas el la diagramo de λ per aldono de unu ĉelo. Ni fiksu entjeron j ≥ 1. Ni
rememoras la transigan formulon por la dimensio de diagramoj, formulo kiu troveblas
en [11] aŭ [16] : se ni fiksas λ ` j, tiam ni havas la sekvan transigon, kiu povas esti
sendepende interesa : ∑

Λ : λ↗Λ

dΛ = (j + 1)dλ.

Estu j entjero kaj (γλ)λ`j vico de reeloj. Ni vastigas tiun linion al la sekva, j + 1 tiel,
sekvante la edĝojn de la grafeo : se Λ ` j + 1, ni metas γΛ =

∑
λ↗Λ γλ. Tiam ni havas la

transigon :

Propozicio 3.6. ∑
Λ`j+1

γΛdΛ = (j + 1)
∑
λ`j

γλdλ.

9



Pruvo

∑
Λ`j+1

γΛdΛ =
∑

Λ`j+1

( ∑
λ : λ↗Λ

γλ

)
dΛ

=
∑
λ`j

∑
Λ`j+1

1λ↗ΛγλdΛ

=
∑
λ`j

γλ
∑

Λ : λ↗Λ

dΛ

= (j + 1)
∑
λ`j

γλdλ.

3.4 Permutoj ĝenerale ne havas nur mallongajn ciklojn

Ni metas, por n ∈ N∗ kaj 1 ≤ j ≤ n,

Sn,j = {σ ∈ Sn : ĉiuj cikloj de σ havas longon ≤ j} .

Ni pruvu ke se j fiksitas, Sn,j estas asimptote multe pli malgranda ol Sn.

Propozicio 3.7. Estu j ≥ 2 fiksita entjero. Tiam por n sufiĉe granda,

log

(
|Sn,j|
|Sn|

)
≤ −n log(n)

T (j)
,

kie T (j) = 1 + 2 + ...+ j.

Pruvo Ni povas vidi ke en Sn,j, estas maksimume (n+1)j konjugklasoj, ĉar klaso estas
determinita per la nombro de fiksaj punktoj, de 2-cikloj,..., de j-cikloj de iu reprezentanto,
ĉiuj necese inter 0 kaj n. Ni superbaru la kardinalon de la konjugklasoj. Estu n ≥ j granda
entjero, µ = (µ1, ..., µr) dispartigo de la entjero n tia ke µ1 ≤ j kaj µr ≥ 1, kaj Cµ la
asociita konjugklaso. Tiam, se kq almontras la nombron de µi egalaj al q, ni havas por n
sufiĉe granda :

|Cµ| =
n!

2k23k3 ...jkjk2!k3!...kj!(n− 2k2 − 3k3 − ...− jkj)!

≤ n!

k2!k3!...kj!(n− 2k2 − 3k3 − ...− jkj)!

=

(
n

(2k2, ..., jkj, (n− 2k2 − ...− jkj))

)
(2k2)!

k2!
...

(jkj)!

kj!
.

≤
(

n

(n
j
, n
j
, ..., n

j
)

)
(2k2)!

k2!
...

(jkj)!

kj!
.

≤ jn
(2k2)!

k2!
...

(jkj)!

kj!
.
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Aldone, tiu lasta produkto estas pli granda se la ki pligrandiĝas, do ni povas supozi sen
limigo de ĝeneraleco ke 2k2 + ...+ jkj ≥ n− 1. Tiam, iu el la ki necese havas kardinalon
pli grandan ol n−1

2+3+...+j
= n−1

T (j)−1
. Ĉar cetere (2k2)!...(jkj)! ≤ n!, ni obtenas :

|Cµ| ≤ jn
n!(
n−1

T (j)−1

)
!
.

Fine, por n sufiĉe granda,

|Sn,j|
|Sn|

≤ (n+ 1)jjn
1(

n−1
T (j)−1

)
!
,

t.e.

log

(
|Sn,j|
|Sn|

)
≤ j log(n+ 1) + n log(j)− log

((
n− 1

T (j)− 1

)
!

)
∼ − n log(n)

T (j)− 1
.

Ĉar T (j)− 1 < T (j), tio pruvas la deziritan superbaron.

Rimarko 3.8. Tiu superbaro aparte pruvas ke la rilato |Sn,j ||Sn| strebas al 0, eĉ obligita per
ajna potenca funkcio, aŭ polinomo. Estas tio kion ni uzos poste. La kazo j = 1, kiun ni
ne traktis, estas triviala ĉar |Sn,1| = 1.
Aldone, se ni superbarus pli sagace, ni povus montri ke kj ∼ n

j
maksimumigas la pezajn

termojn de la konjugklasa kardinalo, kaj do ke log(|Sn,j|) ∼
(

1− 1
j

)
n log(n).

3.5 Superbaro de la nombro de q-cikloj

Estu, por ĉiu permuto σ ∈ Sn kaj entjero q ∈ N∗, Nq(σ) = N
(n)
q (σ) la nombro de q-cikloj

en la cikla faktorigo de σ. Ni rememorigu la bone konatan leĝon de la nombro de fiksaj
punktoj de hazarda permuto5

P(σ ∈ Sn : N1(σ) = m) =
1

m!

n−m∑
i=0

(−1)i

i!
, 0 ≤ m ≤ n.

Ni aparte deduktas ke por ĉiu 0 ≤ m ≤ n, P(σ ∈ Sn : N1(σ) = m) ≤ 1
m!
. Ni ĝeneraligu

tiun superbaron al la nombro de q-cikloj.

Propozicio 3.9. Estu q,m ∈ N∗, tiam

P(σ ∈ Sn : Nq(σ) = m) ≤ 1

qmm!
.

5Por m = 0, ni alplikas la inklud-ekskludan principon al
⋃n

i=1 Fi, kie Fi = {σ ∈ Sn : σ(i) = i}, kaj
poste ni ĝeneraligas al ajna m.
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Pruvo Kiel en la antaŭa paragrafo, se µi estas dispartigo de la entjero n, kq almontras
la nombron de µi egalaj al q.

P(σ ∈ Sn : Nq(σ) = m)

=
1

n!

∑
µ`n
kq =m

|Cµ|

=
∞∑
r=1

∑
µ=(µ1,...,µr≥1)`n

kq =m

1

2k23k3 ...rkrk2!k3!...kr!(n− 2k2 − 3k3 − ...− rkr)!

=
1

qmm!

∞∑
r=1

∑
µ=(µ1,...,µr≥1)`n−qm

kq =0

1

2k23k3 ...rkrk2!k3!...kr!(n− 2k2 − 3k3 − ...− rkr)!

≤ 1

qmm!

∞∑
r=1

∑
µ=(µ1,...,µr≥1)`n−qm

1

2k23k3 ...rkrk2!k3!...kr!(n− 2k2 − 3k3 − ...− rkr)!

=
1

qmm!
P(σ ∈ Sn−qm : Nq(σ) = 0)

≤ 1

qmm!
.

4 Pruvo de la teoremo 1.1
Por tiu tuta sekcio, ni fiksas c ∈ R. Ni rememorigas ke k = k(n, c) =

⌊
1
2
n log(n) + cn

⌋
.

4.1 Superbaro de la ekarto

Tiu superbaro similas al la superbaro de la sumo kiu aperas en [7] post apliki la superbaran
lemon de Diaconis. Tamen, ĉar ni volas pli precizan rezulton, ni devas solvi kelkajn pliajn
teknikajn malfacilâojn, interalie pro tio ke c povas esti negativa.

Ni povas observi ke la reprezentoj de la simetria grupo kiuj havas grandan pezon en
la sumo

d1
(
P ∗kn , Un

)
=

1

|Sn|
∑
σ∈Sn

∣∣∣∣ ∑
λ∈Ŝn

∗

dλs
k
λch

λ(σ)

∣∣∣∣
respondas al dispartigoj kiuj havas tre longan unuan linion. Ni do nature tranĉos laŭ λ1.
Ni metu, por ĉiu M ∈ N∗ kaj entjero n sufiĉe granda,

SM(n) =
{
λ ∈ Ŝn

∗
: λ1 ≥ n−M

}
.

Laŭ la lemo 2.1, por ĉiu M ≥ 1,∣∣∣∣∣d1
(
P ∗kn , Un

)
− 1

|Sn|
∑
σ∈Sn

∣∣∣∣ ∑
λ∈SM (n)

dλs
k
λch

λ(σ)

∣∣∣∣
∣∣∣∣∣ ≤ ∑

λ∈Ŝn ; λ1<n−M

dλ |sλ|k .
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Ni daŭre devas montri ke la dekstrâo de tiu neegalâo strebas al 0 uniforme je n kiam
M → ∞, kaj estimi la duan termon de la maldekstrâo. Ni komence superbaru la
dekstrâon.

Lemo 4.1. (Superbaro de la restoj)
Por ĉiu ε > 0 ekzistas M = M(c, ε) ≥ 1 kaj n0 = n0(M) ∈ N tiaj ke se n ≥ n0, tiam∑

λ1≤n−M

dλ|sλ|k ≤ ε.

Pruvo Ni rememorigas ke sλ = 1
n

+ n−1
n
r(λ). Observu ke se λ estas dispartigo de

n tia ke r(λ) ≥ 0, tiam r(λ′) = −r(λ) kaj do sλ = |sλ| ≥ |sλ′|. Ni unue superbaru∑
λ1≤n−1 dλ |sλ|

k tranĉante la sumon ere. Notu ke λ1 = n respondas al r(λ) = 1, t.e. al
λ = (n), la triviala reprezento, kiu malaperis kiam ni aplikis la transformon de Fourier.
Same, r(λ) = −1 respondas al λ = (1n).

∑
r(λ)<1

dλ |sλ|k = d(1n)

∣∣s(1n)

∣∣k +
∑

−1<r(λ)≤− 2
n

dλ |sλ|k +
∑

− 2
n
<r(λ)< 2

n

dλ |sλ|k +
∑

2
n
≤r(λ)<1

dλ |sλ|k

= S1 + S2 + S3 + S4.

Ni superbaru tiujn diversajn erojn aparte. La unua estas la plej facila :

S1 =

(
1− 2

n

)b 12n log(n)+cnc
= o(1),

S3 ≤
∑

− 2
n
<r(λ)< 2

n

dλ

(
3

n

)k
≤

 ∑
λ∈Ŝn

∗

d2
λ

( 3

n

)k
≤ n!

(
3

n

) 1
2
n log(n)+cn

= o(1),

S2 =
∑

2
n
≤r(λ)<1

dλ

(
|sλ| −

2

n

)k
≤

∑
2
n
≤r(λ)<1

dλ|sλ|k
(

1− 2

n

)k
≤ e−

2
n( 1

2
n log(n)+cn)S4 =

e−2c

n
S4,

kie ni uzis en la superbaro de S2 ke |sλ| ≤ 1. Se ni sukcesas montri ke S4 estas barita (je
n), tiam ni povos konkludi ke

∑
r(λ)<1 dλ |sλ|

k esta barita (je n). Ni superbaros sumon
iom pli grandan ol S4, nome

∑
0≤r(λ)<1 dλ |sλ|

k. Ni komencu per eta superbaro kiu utilos
en la sekvo. Se 1 ≤ j ≤ n, ni havas

∑
λ1=n−j

dλ ≤
∑
λ∗`j

(
n

j

)
dλ∗ ≤

(
n

j

)√
(
∑
λ∗`j

12)(
∑
λ∗`j

d2
λ∗) ≤

nj

j!

√
2jj! ≤ nj2j/2√

j!
, (∗∗)

kie la du unuaj linioj elsekvas el la propozicio 3.1 kaj el la neegalâo de Cauchy-Schwarz,
kaj la antaŭlasta neegalâo venas el la fakto ke ĉiu dispartigo de entjero j povas esti vidita
kiel unu el la 2j subaroj de la aro kun j elementoj. Ni do havas, laŭ la propozicio 3.4
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(notu ke r(λ) ≥ 0 implicas ke s(λ) > 0)

S4 ≤
∑

0≤r(λ)<1

dλs
k
λ

=
n−1∑
j=1

∑
λ1=n−j
0≤r(λ)<1

dλs
k
λ

≤
bn/1000c∑
j=1

( ∑
λ1=n−j

dλ

)(
1− 2j(n− j + 1)

n2

)k
+

n−1∑
j=bn/1000c+1

( ∑
λ1=n−j

dλ

)(
1− j

n

)k
= A1 + A2.

Ni superbaru A1. Ni havas, uzante (∗∗) kaj 1 + x ≤ expx,

A1 ≤
bn/1000c∑
j=1

nj2j/2√
j!

(
1− 2j(n− j + 1)

n2

)k

≤
bn/1000c∑
j=1

2j/2√
j!
ej log(n)e−

2j(n−j+1)

n2
( 1
2
n log(n)+cn)

=

bn/1000c∑
j=1

2j/2√
j!
ej log(n)e−j(1− j−1

n )(log(n)+2c)

=

bn/1000c∑
j=1

2j/2√
j!
e−2jcej(j−1)

log(n)+2c
n .

Estu aj(n) la enhavo de la sumo en la dekstrâo, kaj ni rimarku ke

aj+1(n)

aj(n)
=
e

log(2)
2
−2c

√
j + 1

e2j
log(n)+2c

n .

Kiel funkcio de j kiam n fiksitas, ĝi malkreskas ĝis j = n
4(log(n)+2c)

, kaj kreskas poste. Se
la unua kaj lasta rilatoj estas strikte malpli grandaj ol 1, tiam ni havos subgeometrian
sumon, kiu do estos barita. La lasta rilato, ĉe n

1000
, valoras

√
1000e

log(2)
2
−2c+ 4c

1000n
2

1000
− 1

2 −−−→
n→∞

0.

Por la unua rilato, ni devas atenti iom pli. Ĉe j = 1, la rilato povas esti multe pli granda
ol 1, des pli ke c estas malgranda (t.e. negativa kun granda modulo). Ni do devos tranĉi
lastafoje, kaj konsideri la sumon ekde taŭga M , dependa je c sed ne je n. Tiel, kvankam
la konverĝo estas rapida en la kazo en kiu c pozitivas, kazo jam traktita de Diaconis kaj
Shahshahani, se c estas tre negativa, necesos konsideri multegajn termojn kaj la konverĝo
estos multe pli malrapida. Estu M tia ke

e
log(2)

2
−2c

√
M + 1

≤ 1

4
,
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kaj n tiom granda, ke
e2M

log(n)+2c
n ≤ 2,

kaj ke la rilato aj+1(n)

aj(n)
ĉe j = n/1000 estu malpli granda ol 1/2. Tiam, ĉar ĉiuj rilatoj

ekde j = M estas malpli grandaj ol 1/2, ni havas :

n/1000∑
j=1

aj(n) ≤
M∑
j=1

aj(n) + aM(n)
∞∑
i=1

1

2i
−−−→
n→∞

M∑
j=1

2j/2√
j!
e−2jc +

2M/2

√
M !

e−2Mc.

Tiel, ĉar c ∈ R fiksitas, A1 estas barita uniforme je n. Ni ekzorgu pri A2, estos pli facile
kaj agrable.

Ni observas ke por ĉiu j ≥ 0, jj ≤ j!3j, kaj do, per (∗∗),

∑
λ1=n−j

dλ ≤
nj6j/2

jj/2
.

Estu j inter n/1000 kaj n− 1. Tiam

nj6j/2

jj/2

(
1− j

n

)k
=
nj6j/2

jj/2
ek log(1− j

n)

≤ nj6j/2

jj/2
e
−k
(
j
n

+ j2

2n2

)

≤ nj6j/2

jj/2
e−( 1

2
log(n)+c)(j+ n

2·106 )

= 6j/2e
j
2

log(nj )e−c(j+
n

2·106 )e−
1

4·106
n log(n)

≤ 6j/2e
j
2

log(1000)e|c|(j+
n

2·106 )e−
1

4·106
n log(n)

≤ en
log(6)

2 en log(1000)e|c|(n+ n
2·106 )e−

1
4·106

n log(n)

= eKn−K
′n log(n),

kie K estas reela konstanto kaj K ′ estas konstanto strikte pozitiva. Tiel,

A2 ≤ neKn−K
′n log(n) −−−→

n→∞
0.

Nun eblas konkludi, uzante la superbarojn de la pruvo por A1.

Estu ε > 0. Estu M = M(c, ε) ≥ 1 tia ke e
log(2)

2 −2c
√
M+1

≤ 1
4
kaj 22M/2√

M !
e−2Mc < ε. Tiam por n
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sufiĉe granda,

∑
λ1≤n−M

dλ |sλ|k ≤ S1 + S2 + S3 +

n/1000∑
j=M

aj(n) + A2

≤
n/1000∑
j=M

aj(n) + o(1)

≤ aM(n)
∞∑
i=0

1

2i
+ o(1)

≤ 2
2M/2

√
M !

e−2Mc + o(1)

< ε+ o(1) as n→∞.

4.2 Lemo de polinoma konverĝo

Ni nun estimu la ĉefan termon.

Lemo 4.2. Estu ` ∈ N∗. Tiam, kiam n→∞,

1

n!

∑
σ∈Sn

∣∣∣∣∑̀
j=1

∑
λ1=n−j

dλs
k
λch

λ(σ)

∣∣∣∣ =
1

n!

∑
σ∈Sn

∣∣∣∣∑̀
j=1

e−2jcTj(Fix(σ))

∣∣∣∣+ o(1),

kie ni rememorigas ke

Tj(z) =

j∑
i=0

(
z

j − i

)
(−1)i

i!
.

Ni montru unuatempe kiel la polinomoj Tj, ŝlosil-elemento de la pruvo, aperas nature.

Lemo 4.3. Estu j ∈ N∗ fiksita entjero, kaj σ ∈ Sn permuto kiu havas almenaŭ unu
ciklon pli longan ol6 j (t.e. σ ∈ Sn\Sn,j). Tiam

1

j!

∑
λ∈Ŝn : λ1=n−j

dλ∗chλ(σ) = Tj(Fix(σ)).

Pruvo de la lemo 4.3 Tiu pruvo estas kombinatorika kaj forte baziĝas sur la formulo
de Murnagham-Nakayama. Ni unue konsideru σ ∈ Sn\Sn,j kiel argumenton en chλ(σ)
kaj rememorigu ke por ĉiu permuto σ kaj q ∈ N∗, Nq(σ) estas la nombro de q-cikloj en la
cikla faktorigo de σ. Ekzemple, se λ = (n − 4, 1, 1, 1, 1) kaj σ havas ciklon pli longan ol
4, ni havas laŭ la formulo de Murnagham-Nakayama, kaj skribante Ni anstataŭ Ni(σ),

chλ(σ) =

(
N1

4

)
+N3N1+

(
N2

2

)
−N4−

((
N1

3

)
−N2N1 +N3

)
+

((
N1

2

)
−N2

)
−N1+1.

Ni povas observi ke chλ(σ) estas polinomo en N1(σ) = Fix(σ), N2(σ), ..., Nj(σ). La ŝlosila
observâo estas ke ni povas ĉion kalkuli kiam ni prenas la sumon kun λ1 = j konstanta,

6Ni povus preni σ ∈ Sn\Sn,j−1.
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kaj ke nia polinomo, kiu apriore havas j argumentojn, fakte estas nur unuargumenta
polinomo, en N1(σ), la nombro de fiksaj punktoj de σ. Tio venas el la orteco de iuj
karakteroj kaj de la transigo de maso (propozicio 3.6), kiuj igos ĉiujn aliajn termojn
internuliĝi. Ni detalu iom pli.
Por la polinoma algebro C [z1, z2, ...], ni ne uzos la kanonan bazon generitan per la zji , sed
tiun generitan de la

(
zi
j

)
, pli bone adaptitan tie.

Estu σ ∈ Sn\Sn,j. Se λ estas dispartigo de n tia ke λ1 = n − j, tiam la koeficiento
de
(
N1(σ)
j

)
en chλ(σ) estas nature la nombro de manieroj plenigi la diagramon de Young

de λ∗ per ĉiuj entjeroj inter 1 kaj j, kun linia kaj kolumna kresko, t.e. la nombro de
standardaj tableloj de λ∗, kiu valoras dλ∗ = chλ

∗
(Id).

Pli ĝenerale se j1, ..., jr ∈ N estas tiaj ke j1 + 2j2 + ...+ rjr = j, tiam la koeficiento de(
N1(σ)

j1

)(
N2(σ)

j2

)
...

(
Nr(σ)

jr

)
en chλ(σ) estas

chλ
∗
(rjr , ..., 2j2 , 1j1).

Tiel, pro karaktera orteco, la koeficiento de
(
N1(σ)
j1

)(
N2(σ)
j2

)
...
(
Nr(σ)
jr

)
en la sumo∑

λ∈Ŝn : λ1=n−j

dλ∗chλ(σ)

estas ∑
λ∈Ŝn : λ1=n−j

dλ∗chλ
∗ (
rjr , ..., 2j2 , 1j1

)
=

∑
λ∈Ŝn : λ1=n−j

chλ
∗
(Id)chλ

∗ (
rjr , ..., 2j2 , 1j1

)
= 0.

Per transigo de maso, ni ankaŭ povas observi ke por 1 ≤ j′ ≤ j1, se σ havas almenaŭ j′
fiksitaj punktoj (se ĝi havas malpli, la koeficiento nulas), la koeficiento de(

N1(σ)

j1 − j′

)(
N2(σ)

j2

)
...

(
Nr(σ)

jr

)
en la sumo ∑

λ∈Ŝn : λ1=n−j

dλ∗chλ(σ)

valoras (−1)j
′ foje j(j − 1)...(j − j′ + 1) la koeficienton de(

N2(σ)

j2

)
...

(
Nr(σ)

jr

)
en la sumo ∑

λ∈Ŝn−j′ : λ1=n−j+j′

dλ∗chλ(σ′),

kie σ′ havas j′ fiksitaj punktoj malpli ol σ, kaj sammulte da i-cikloj por ĉiu i ≥ 2,
koeficiento kiu nulas krom se j2 = ... = jr = 0, kazo en kiu ĝi valoras 1. Fine, ni ja
montris ke
1

j!

∑
λ∈Ŝn : λ1=n−j

dλ∗chλ(σ) =

(
N1(σ)

j

)
−
(
N1(σ)

j − 1

)
+

1

2

(
N1(σ)

j − 2

)
+ ...+

(−1)j

j!
= Tj(Fix(σ)).
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Pruvo de la lemo 4.2 Uzante ke
∣∣∣|a| − |b|∣∣∣ ≤ |a− b| kaj la triangulan neegalâon,∣∣∣∣∣ 1

n!

∑
σ∈Sn

∣∣∣∣∑̀
j=1

∑
λ1=n−j

dλs
k
λch

λ(σ)

∣∣∣∣− 1

n!

∑
σ∈Sn

∣∣∣∣∑̀
j=1

e−2jcTj(Fix(σ))

∣∣∣∣
∣∣∣∣∣

≤ 1

n!

∑
σ∈Sn

∣∣∣∣∑̀
j=1

∑
λ1=n−j

dλs
k
λch

λ(σ)−
∑̀
j=1

e−2jcTj(Fix(σ))

∣∣∣∣
≤ 1

n!

∑
σ∈Sn

∑̀
j=1

∣∣∣∣
( ∑
λ1=n−j

dλs
k
λch

λ(σ)

)
− e−2jcTj(Fix(σ))

∣∣∣∣.
Ni nun duere tranĉu la sumon sur Sn, laŭ Sn,` kaj Sn\Sn,`, kaj superbaru ĉiu el tiuj
du sumoj aparte. Ni komencu per la sumo sur Sn,`. Ĉar en nia sumo 0 ≤ sλ ≤ 1 kaj
chλ(σ) ≤ dλ,

1

n!

∑
σ∈Sn,`

∑̀
j=1

∣∣∣∣ ∑
λ1=n−j

dλs
k
λch

λ(σ)− e−2jcTj(Fix(σ))

∣∣∣∣
≤ 1

n!

∑
σ∈Sn,`

∑̀
j=1

∑
λ1=n−j

(
dλs

k
λ

∣∣chλ(σ)
∣∣+
∣∣e−2jcTj(Fix(σ))

∣∣)
≤ 1

n!

∑
σ∈Sn,`

∑̀
j=1

∑
λ1=n−j

(
d2
λ + e−2jc(`+ 1)n`

)
≤ 1

n!

∑
σ∈Sn,`

∑̀
j=1

∑
λ1=n−j

(((
n

j

)
dλ∗

)2

+ e−2jc(`+ 1)n`

)

≤ K(`, c)n2` |Sn,`|
|Sn|

uzante ke
(
n

j

)
dλ∗ ≤

nj

j!
dλ∗ ≤ nj ≤ n`

= o(1),

kie K(`, c) estas konstanto kiu nur dependas je l kaj c. Ni ektraktu la duan sumon, kiun
ni reskribos uzante la lemon 4.3:

1

n!

∑
σ∈Sn\Sn,`

∑̀
j=1

∣∣∣∣
( ∑
λ1=n−j

dλs
k
λch

λ(σ)

)
− e−2jcTj(Fix(σ))

∣∣∣∣
=

1

n!

∑
σ∈Sn\Sn,`

∑̀
j=1

∣∣∣∣ ∑
λ1=n−j

(
dλs

k
λ − e−2jcdλ∗

j!

)
chλ(σ)

∣∣∣∣
≤ 1

n!

∑
σ∈Sn\Sn,`

∑̀
j=1

∑
λ1=n−j

∣∣∣∣dλskλ − e−2jcdλ∗

j!

∣∣∣∣ ∣∣chλ(σ)
∣∣ .

Ni observu ke
d(n−j,λ2,...,λr)s

k
(n−j,λ2,...,λr) − e

−2jcd(λ2,...,λr)

j!
= O

(
1

n

)
18



por ĉiu 1 ≤ j ≤ ` kaj ĉiu λ2 ≥ λ3 ≥ ... ≥ λr ≥ 1 tiaj ke λ2 + ...+ λr = j. (Notu ke estas
finia nombro de tiaj termoj.) Ni tranĉu la dekstrâon laŭ ĉu max(N1(σ), ..., N`(σ)) estas
pli aŭ malpli granda ol n

1
2` .

Unuaflanke,

1

n!

∑
σ∈Sn\Sn,`

max(N1(σ),...,N`(σ))≤n
1/(2`)

∑̀
j=1

∑
λ1=n−j

∣∣∣∣dλskλ − e−2jcdλ∗

j!

∣∣∣∣ ∣∣chλ(σ)
∣∣

= O

(
1

n

)
1

n!

∑
σ∈Sn\Sn,`

max(N1(σ),...,N`(σ))≤n
1/(2`)

∑̀
j=1

∑
λ1=n−j

K(`, c) max(N1(σ), ..., N`(σ))`

= O

(
1

n

)
1

n!

∑
σ∈Sn\Sn,`

max(N1(σ),...,N`(σ))≤n
1/(2`)

∑̀
j=1

∑
λ1=n−j

O
(
n

1
2

)

= O
(
n−

1
2

)
.

Duaflanke,

1

n!

∑
σ∈Sn\Sn,`

max(N1(σ),...,N`(σ))>n
1
2`

∑̀
j=1

∑
λ1=n−j

∣∣∣∣dλskλ − e−2jcdλ∗

j!

∣∣∣∣ ∣∣chλ(σ)
∣∣

=
1

n!

∑
σ∈Sn\Sn,`

max(N1(σ),...,N`(σ))>n
1
2`

∑̀
j=1

∑
λ1=n−j

O

(
1

n

)
K(`, c) max(N1(σ), ..., N`(σ))`

≤ P(σ ∈ Sn : max(N1(σ), ..., N`(σ)) > n
1
2` )O

(
1

n

)
O
(
n`
)

≤
∑̀
i=1

P
(
σ ∈ Sn : Ni(σ) > n

1
2`

)
O

(
1

n

)
O
(
n`
)

= O

 1(
n

1
2`

)
!

O

(
1

n

)
O
(
n`
)

laŭ la propozicio 3.9

= o(1).

4.3 Polinomoj kun alta grado estas neglektindaj

Lemo 4.4. Estu ε > 0. Ekzistas M0 = M0(ε, c) tia ke por ĉiu M ≥M0 kaj n ∈ N∗,∣∣∣∣∣ 1

n!

∑
σ∈Sn

∣∣∣∣ M∑
j=1

e−2jcTj(Fix(σ))

∣∣∣∣− 1

n!

∑
σ∈Sn

∣∣∣∣ ∞∑
j=1

e−2jcTj(Fix(σ))

∣∣∣∣
∣∣∣∣∣ ≤ ε.

19



Pruvo Estu M,n ∈ N∗. Tiam ni havas, uzante denove ke
∣∣∣|a| − |b|∣∣∣ ≤ |a− b| ,∣∣∣∣∣ 1

n!

∑
σ∈Sn

∣∣∣∣ M∑
j=1

e−2jcTj(Fix(σ))

∣∣∣∣− 1

n!

∑
σ∈Sn

∣∣∣∣ ∞∑
j=1

e−2jcTj(Fix(σ))

∣∣∣∣
∣∣∣∣∣

≤ 1

n!

∑
σ∈Sn

∣∣∣∣ ∞∑
j=M+1

e−2jcTj(Fix(σ))

∣∣∣∣
=

∞∑
r=0

P(σ ∈ Sn : N1(σ) = r)

∣∣∣∣ ∞∑
j=M+1

e−2jcTj(r)

∣∣∣∣
≤

∞∑
r=0

1

r!

∞∑
j=M+1

e−2jc |Tj(r)| ankoraŭ pro la propozicio 3.9.

Ni nun observu ke se r ≥ j,

|Tj(r)| =

∣∣∣∣∣
j∑
i=0

(
r

j − i

)
(−1)i

i!

∣∣∣∣∣ ≤
j∑
i=0

(
r

j − i

) ∣∣∣∣(−1)i

i!

∣∣∣∣ ≤ j∑
i=0

(
r

j − i

)
≤ 2r,

kaj se r ≤ j,

1

r!
|Tj(r)| =

1

r!

∣∣∣∣∣
j∑

i=j−r

(
r

j − i

)
(−1)i

i!

∣∣∣∣∣ ≤ 1

r!(j − r)!

j∑
i=j−r

(
r

j − i

)
≤ 1((

j
2

)
!
)2 2r.

Ni do konkludas ke
∞∑
r=0

1

r!

∞∑
j=M+1

e−2jc |Tj(r)|

=
∞∑

j=M+1

e−2jc

j∑
r=0

1

r!
|Tj(r)| +

∞∑
j=M+1

∞∑
r=j+1

1

r!
e−2jc |Tj(r)|

≤
∞∑

j=M+1

e−2jc((
j
2

)
!
)2

j∑
r=0

2r +
∞∑

j=M+1

∞∑
r=j+1

1

r!
e2r|c|2r

≤
∞∑

j=M+1

e−2jc((
j
2

)
!
)2 2j+1 +

∞∑
j=M+1

∞∑
r=j+1

1

r!
e2r|c|2r

= o(1)

kiam M →∞.
Antaŭ ol trakti la lastan aproksimâon, ni reskribu la nefinian sumon kiu estas en la
absolutaj valoroj. Ni metu

fc : x 7→ e−e
−2c (

1 + e−2c
)x − 1.

Propozicio 4.5.

Estu N ∈ N. Tiam
∞∑
j=1

e−2jcTj(N) = fc(N).
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Pruvo Sufiĉas ŝanĝi variablojn kaj interŝanĝi la du sumojn :

∞∑
j=1

e−2jcTj(N) =
∞∑
j=1

j∑
i=0

e−2jc

(
N

j − i

)
(−1)i

i!

=
∞∑
j=1

j∑
i=0

e−2jc

(
N

i

)
(−1)j−i

(j − i)!

=
∞∑
j=0

j∑
i=0

e−2jc

(
N

i

)
(−1)j−i

(j − i)!
− 1

=
∞∑
i=0

(
N

i

)
e−2ic

∞∑
j=i

e−2(j−i)c (−1)j−i

(j − i)!
− 1

=
N∑
i=0

(
N

i

)
e−2ice−e

−2c − 1

= e−e
−2c (

1 + e−2c
)N − 1.

4.4 Konkludo de la pruvo

Lemo 4.6. Kiam n→∞, ni havas :

1

n!

∑
σ∈Sn

∣∣∣fc (N (n)
1 (σ)

)∣∣∣ −−−→
n→∞

E |fc (Poiss(1))| ,

kie Poiss(1) almontras la leĝon de Poisson kun parametro 1.

Pruvo Ĉar faktorialoj kreskas multe pli rapide ol eksponencialoj, kaj do ol fc, ni havas
kiam n→∞, ∣∣∣∣∣E |fc (Poiss(1))| − 1

n!

∑
σ∈Sn

∣∣∣fc (N (n)
1 (σ)

)∣∣∣∣∣∣∣∣
=

∣∣∣∣∣
∞∑
r=0

e−1

r!
|fc(r)| −

n∑
r=0

1

r!

(
n−r∑
i=0

(−1)i

i!

)
|fc(r)|

∣∣∣∣∣
=

∣∣∣∣∣
n∑
r=0

1

r!

(
∞∑

i=n−r+1

(−1)i

i!

)
|fc(r)|+

∞∑
r=n+1

e−1

r!
|fc(r)|

∣∣∣∣∣
= o(1).

Ni nun estas pretaj estimi ĉiujn niajn estimojn.

Pruvo de la teoremo 1.1 Estu ε > 0 kaj M,n0 tiaj ke por n ≥ n0, ĉiuj aproksimâoj
estu validaj je ε. Estu n ≥ n0.
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Laŭ la lemoj 2.1 kaj 4.1,∣∣∣∣∣d1
(
P ∗kn , Un

)
− 1

n!

∑
σ∈Sn

∣∣∣∣ ∑
λ1≥n−M

dλs
k
λch

λ(σ)

∣∣∣∣
∣∣∣∣∣ ≤ ε.

Laŭ la lemo 4.2,∣∣∣∣∣ 1

n!

∑
σ∈Sn

∣∣∣∣ ∑
λ1≥n−M

dλs
k
λch

λ(σ)

∣∣∣∣ − 1

n!

∑
σ∈Sn

∣∣∣∣ M∑
j=1

e−2jcPj(N1(σ))

∣∣∣∣
∣∣∣∣∣ ≤ ε.

Laŭ la lemo 4.4,∣∣∣∣∣ 1

n!

∑
σ∈Sn

∣∣∣∣ M∑
j=1

e−2jcPj(N1(σ))

∣∣∣∣ − 1

n!

∑
σ∈Sn

∣∣∣∣ ∞∑
j=1

e−2jcPj(N1(σ))

∣∣∣∣
∣∣∣∣∣ ≤ ε.

Laŭ la lemo 4.6, ∣∣∣∣∣ 1

n!

∑
σ∈Sn

∣∣∣∣ ∞∑
j=1

e−2jcPj(N1(σ))

∣∣∣∣ − E |fc(Poiss(1))|

∣∣∣∣∣ ≤ ε.

Konsekvence, per triangulaj neegalâoj,∣∣∣∣∣d1
(
P ∗kn , Un

)
− E |fc(Poiss(1))|

∣∣∣∣∣ ≤ 4ε.

Tiel, ni pruvis ke por ĉiu c ∈ R,

d1
(
P ∗kn , Un

)
−−−→
n→∞

E |fc(Poiss(1))| .

Por konkludi, ni reskribu tiun ekspekton laŭ la natura formo de la eldiro :

E |fc(Poiss(1))|

=
∞∑
r=0

e−1

r!

∣∣∣∣e−e−2c (
1 + e−2c

)r − 1

∣∣∣∣
=

∞∑
r=0

∣∣∣∣∣
(
e1+e−2c

)−1

r!

(
1 + e−2c

)r − e−1

r!
1r

∣∣∣∣∣
= d1

(
Poiss

(
1 + e−2c

)
,Poiss(1)

)
,

kaj tio kompletas la pruvon de la teoremo 1.1.

Dankoj Mi ŝatus dankegi mian eksprofesoron Justin Salez, dank’ al kiu mi malkovris
miksotemojn kaj kiu tre bone zorgis pri mi dum mia magistra tezo. Mi ŝatus danki ankaŭ
Nathanaël Berestycki pro lia gastamo kiam li invitis min al la universitato de Vieno, kaj
pro liaj atentaj relegoj kaj multnombraj sugestoj.
Mi ŝatus aldone danki miajn amikojn Thurian Lefort pro lia relego kaj trovo multajn
tajperarojn en la franca kaj angla versioj, kaj Louis Noiset pro interesaj diskutoj ĉirkaŭ
la esperanta versio. Fine, mi dankegas mian eksprofesoron de esperanto Jesper Jacobsen,
kiu instruis multon al mi, ne nur dum liaj kursoj ĉe ENS.
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