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Résumé'

Nous présentons une amélioration du lemme de majoration de Diaconis, qui permet de
calculer la valeur limite de la distance a la stationnarité. Nous ’appliquons ensuite aux
transpositions aléatoires étudiées par Diaconis et Shahshahani.

Resumo

Ni prezentas plibonigon de la superbara lemo de Diaconis, kiu ebligas kalkuli la limesan
valoron de la distanco al staranteco. Ni poste aplikas gin al hazardaj 2-cikloj studitaj de
Diaconis kaj Shahshahani.

Abstract’

We present an improved version of Diaconis’ upper bound lemma, which is used to com-
pute the limiting value of the distance to stationarity. We then apply it to random
transpositions studied by Diaconis and Shahshahani.
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1 Enkonduko

1.1 Cefaj rezultoj

Estu &, la simetria grupo kun indico n kaj P, la probablo sur &,, difinita per

1 2
P,(Id) = - kaj P,(1) = ST estas 2-ciklo.

Gi estas la mikso per hazardaj 2-cikloj sur &, studita de Diaconis kaj Shahshahani en

4]
Estu U, la uniforma probablo sur &,,. Se E estas aro kaj u, v estas probabloj sur E, ni
difinas la tutvarian distancon® inter u kaj v per la formulo

drv(p, v) = —d1 (v Z |l

xEE

En [¢], Diaconis kaj Shahshahani montras ke estas sojla fenomeno (ati kutofo, el cutoff
anglalingve) ¢e %nlog(n) por tiu hazarda promenado, t.e., se f(n) = L%nlog(n)J, ke por
ciul<e<1,

dpy (P;(l—s)f(n)’ U,) — 1 kaj drv (P;(1+e)f(n), U,) — 0.

n—oo n—oo

Malgrati laborego realigita pri miksotempoj kaj pli speciale pri hazardaj 2-cikloj (vidu
la referencojn sube), obteni precizan priskribon de la transiro restis gis nun malfermita
problemo, formale proponita de Nathanaél Berestycki dum laborgrupo de AIM pri mar-
kovéenaj miksotempoj en 2016 (http://aimpl.org/markovmixing/5/).

Jen nia ¢efa rezulto :

Teoremo 1.1. Estu ¢ € R. Tiam ni havas :
|_2nlog +an . _9¢ .
drv [ Pn U, | —— drv (P01ss (1 +e ) ,Pmss(l)) ,
n—oo

kie Poiss(a) almontras la legon de Poisson kun parametro a.

3En la pruvoj ni uzos la distancon L', notaciitan d;, por malpezigi je la faktoro %


http://aimpl.org/markovmixing/5/

Limesprofilaj konjektoj

Ni antatividas ke la limesa profilo dry (Poiss (1 + e7¢), Poiss(1)), kiun ni obtenas tie se
ni anstataiigas la tempon L%nlog(n) + an per pli natura tempo, L%(n log(n) + cn)J,
aperos por multaj aliaj miksotempaj problemoj sur &,,, t.e. la problemoj kie la lastaj
miksitajoj estas la fiksaj punktoj. Sajnas ke tiu propreco ofte aperas kiam la probablo
P, estas konstanta sur konjugklasoj. Ekzemple, uzante la rezultojn el [10], ni povas
adapti nian pruvon al hazardaj k-cikloj (k fiksita) je la tempo L%(n log(n) + cn)J, kaj ni
konjektas ke ni ankoraii havos la saman limesan profilon por la hazardaj konjugklasoj kun
kardinalo o(n), studitaj en [3], sed ke estus teknike multe pli malfacile adapti nian pruvon
tiukaze. Por tiu generala kazo, tre bela formulo (Propozicio 10.15 en [10]), uzita por pruvi
la formulon de Stanley-Féray, kaj kiu ebligas esprimi ¢iujn reduktitajn karakterojn per
ekspekto, x*(u) = E [(—1)™)], certe tre utilos.

Ni konjektas ke tiu profilo ankat estos la bona profilo por la mikso per hazardaj involucioj

studita de Megan Bernstein en |1, je la tempo L@(log(n) + C)J Por legi pri aliaj

konataj limesaj profiloj, vidu [!] kaj [12].

1.2 Ligoj kun antatiaj rezultoj kaj ideo de la pruvo

Ligoj kun antatiaj rezultoj En 1981, Diaconis kaj Shahshahani montris en [%], uzante
la reprezentoj de la simetria grupo, kutofon® ée \_%nlog(n)J por la mikso per hazardaj
2-cikloj, donante asimptotajn neegalajojn je la tempo L%n log(n) + an, ¢ > 0 fiksita. En
1987, Matthews, en [15], rafinis tiujn rezultojn dank’ al probableca pruvo. En 2011, Bere-
stycki, Schramm kaj Zeitouni generaligis en [?| la antatian rezulton al mikso per hazardaj
k-cikloj, por k fiksita kiam n — oo, tiel pruvante kutofon ¢e L%nlog(n)J, konjektita de
Diaconis. Fine, en 2014, Berestycki kaj Sengiil generaligis denove tiun rezulton en [3], al
ajna konjugklaso kies subtenanto havas kardinalon o(n), kaj tio sen grupreprezentoj.

La pruvo en [%| bazigas sur la fama superbara lemo de Diaconis, kiu kondukas al
sumo sur la neredukteblaj reprezentoj kiun ili delikate superbaras per reprezentoj kaj
analizo. Fakte, oni povas observi ke la nura loko kie multa informo (ni perdas faktoron
e en la limeso ¢ — oo de la limesa profilo) estas perdita pri la limesa profilo estas je la
ekkomenco, kiam la neegalajo de Cauchy-Schwarz estas uzata en la pruvo de la superbara
lemo. La sekcio 2 proponas rimedon por tiu informoperdo, plibonigante la superbaran le-
mon gis aproksimiga lemo (lemo 2.1), kiu asimptote estas multe pli preciza. La subsekcio
4.1, iom teknika, generaligas la asimptotajn superbarojn de Diaconis kaj Shahshahani al
ajna c € R.

Alia kerna punkto de nia pruvo estas kungrupigi, en la sumoj sur la neredukteblaj re-
prezentoj A = (A, ...) de &, ¢iujn dispartigojn havantajn la saman \;. Pli precize, La
subsekcio 4.2 montras ke se ni fiksas 7 € N*, ni povas studi la sumon sur la dispartigoj
kie A1 valoras n — j kiel sumo sur la dispartigoj de la entjero j, kio donas eksplicitajn kaj
facile manipuleblajn formulojn.

Por kompreni el kie la limesa profilo venas, ni observu ke, dank’ al la subbaro de Matt-
hews, la 8§losila observeblo estas la nombro de fiksaj punktoj. La limesa profilo estas
la distanco inter la asimptota distribucio de la nombro de fiksaj punktoj je la tempo
| nlog(n) + cn|, Poiss (1 + e7%), kaj tiu de hazarda permuto, Poiss(1).

4Fakte ilia subbaro estas 1/e do gi ne ekzakte estas kutofo.



La éi-supre eldirita teoremo 1.1 subportas konjekton de Nathanaél Berestycki :

Konjekto 1.2. Estu 7, la unua tempo kiam ¢iuj kartoj estas tusitaj, kaj X, la stato de
la kartaro je tiu (hazarda) tempo. Tiam drv (X5, ,U,) — 0 kiam n — oo.

Alivorte, la konjekto diras ke 7,, estas haltotempo je kiu la hazarda permuto estas bone

miksita por ¢iaj praktikaj celoj. Notu ke je la tempo 7, —1, la permuto havas almenati unu
fikspunkton, kaj do ke drv(X,,_1,U,) ne povas strebi al nul. Tiel, la konjekto implicas
ke 7, estas fortsence optimuma por miksi la kartaron.
Ni nun klarigos kiamaniere la ¢i-supra teoremo 1.1 estas ligita kun tiu konjekto. Por ¢iu
tempo ¢, estu Gy la hazarda grafeo kiu enhavas edgon (i,7) se kaj nur se la kunligita
2-ciklo estis aplikata almenat unufoje antai la tempo ¢. Tiam G, esence estas la realigo
de la hazarda grafeo de Erdds—Rényi kun parametroj n kaj p = 1 — exp(—t/ (g‘)) Eblas
facile kontroli ke ¢iu ciklo de la hazarda permuto X; je la tempo t estas, kiel aro, subaro
de koneksa komponanto de G;. Estas do nature konsideri la ciklan faktorigon de la
permuto malvastigita al aparta koneksa komponanto de G;. Estu &, la plej granda
komponanto de G (kiu estas makroskopa se t > ¢n por iu ¢ > 1, kaj enhavas ¢iujn
verticojn kun alta probablo post la tempo 7,). €, nomigas la giganta komponanto de
G;. Latu fama rezulto de Schramm [15], la distribuo de la longo de la plej longaj cikloj
de X; ene de €;, normigita per la tuta grando |&;| de la giganta komponanto, strebas al
distribuo de Poisson—Dirichlet (laii la senco de finidimensiaj distribuoj). Sekve ni povas
vidi ke la plej longaj cikloj limese koincidas kun la distribuo de hazarda permuto en la
giganta komponanto (vidu ekzemple [2]). Pli forta versio de la teoremo de Schramm estus
la sekva (ankait de Nathanaél Berestycki) :

Konjekto 1.3. Supozu ke t > ¢n/2 por iu ¢ > 1. Por ¢iu &, la distribuo de X;|¢, estas
proksimume uniforma, en la senco ke dry(X¢|e,, Ug,) — 0 probablece, kiam n — oo, kie
U, almontras la uniforman permuton sur la giganta komponanto ;.

Ne malfacilas montri ke la konjekto 1.3 implicas la konjekton 1.2. Efektive, la konjekto
1.3 tre precize priskribas la strukturon de X; najbare de la miksotempo : set = [%n log n+
cn|, tiam lat tiu konjekto, se 7, > ¢, X; konsistus el proksimume uniforma permuto sur
n — 1 punktoj, kaj unu kroma fiksopunkto ; kaj se 7, > t, X, esence estus nedistingebla
de hazarda permuto. Tia priskribo implicus ke

drv(Xy, Uy,) = dry(Fix(Xy), Poiss(1)) + o(1),

kie Fix(X;) estas la nombro de fikspunktoj de X;. Krome, estas relative facile kontroli
ke P(7, > t) — e ¢ kaj do, ankoraii supozante la konjekton 1.3, ni povus dedukti ke

drv(Xy, Uy,) = dpy(Poiss(1 + e ), Poiss(1)) + o(1),

kie la kroma dekstroflanka termo e~2¢ precize respondas al la probablo P(7,, > t). Tiu
lasta egalajo ekzakte estas nia teoremo 1.1.



Strukturo de la artikolo En la sekcio 2, ni prezentos la plibonigon de la superbara
lemo de Diaconis, uzante la nekomutecan transformon de Fourier, kiu rekondukas nin al
grupreprezentoj. En la sekcio 3, ni faros kelkajn rememorigojn pri la grupreprezentoj de
la simetria grupo, ni montros precizajn estimojn de la kombinatorikaj formuloj hoklonga
kaj de Murnagham-Nakayama kiam la grando n de niaj dispartigoj strebas al infinito
dum n — Ay restas konstanta, kaj ni pruvos kelkajn superbarojn kiuj poste utilos. En
la sekcio 4, ni pruvos la eldiritan teoremon, aproksimajo post aproksimajo. En la tuta
sekvo, k neambigue almontros la entjeron

k= k(n, c) = Enlog(n) + an |

Ideo de la pruvo La algebraj objektoj 6n,t1”1V dy, sy kaj ch® estos difinitaj je la
komenco de la sekcio 2. Por éiu o € &,,, Fix(o) almontros la nombron de ﬁkspunktOJ de

la permuto . Por j € N*, ni difinas la polinomon Tj(z) per la formulo )/, (:)%
La ideo estas unue fiksi reelon ¢ € R, kaj poste difini por é¢iu € > 0 entjeron M = M(c, €)
tia ke kiam n strebas al infinito, ¢iuj sekvaj aproksimajoj veru je e.

Reskribante la sumon dank’ al la transformo de Fourier kaj la plibonigon de la lemo de

Diaconis,

di (P, U,) ‘6 | YUY dasiah o) z%Z

€6y )\eé;\{triv} L 0€6,

Z dyshch*(o)

A1>n—M

Poste, pro la lemo de polinoma konvergo kaj lasante M — oo, ni obtenos

ED DR CNCIEDY Ze HT(Fix(o)) |~ o S

ceG, '\ >n—M UEG ceS,

> e ¥y (Fix(0))|

Jj=1

Fine, strebigante n al infinito,

o T e )| =

ce6, ! j=1 oeG,

6_672c (1 n 6_2C>F1X(0') . 1‘

~F e_e—Qc (1 1 6—2c)POiSS(1) . 1‘

= d; (Poiss (1 + e~>°) , Poiss(1)) .

2 Plibonigo de la superbara lemo de Diaconis

En tiu sekcio ni prezentas la plibonigon de la superbara lemo de Diaconis. Ni metigos
en la kadro de finiaj grupoj, sed tiu lemo povas senprobleme esti uzata en pli generala
kadro, por kompaktaj grupoj ekzemple. Nia celo estas obteni pli bonan aproksimajon ol
en [4], sen uzi Cauchy-Schwarz antati ol Fourier.

Estu G finia grupo, CG la algebro de la grupo G kaj G la aro de la neredukteblaj
reprezentoj de G. Ni notaciu triv la trivialan reprezenton de G kaj G* = G\ {triv}. Por



a € G, Ni ankati notaciu p, la matricon de la reprezento «, ch® gia karaktero kaj d, gia
dimensio. Ni unue rememorigu la inversan formulon por la nekomuteca transformo de

Fourier, bone klarigita en [1(]. Por f: G — C kaj g € G, ni havas
9)" f(a)).
-y Tl
ael

Ni deduktas el tio ke por ¢iut € N,

dl P*t Z ’P*t |

geG

=2

geG',,

=2

gEG GG*

Z @Tr (P =U) () (9)")

Z —|T1" (P(a)p*(9)")].

Aldone, ¢ar P estas funkcio konstanta sur ¢iu konjugklaso, ni scias per la lemo de Schur
w. Ni do obtenas ke :

Nun, se anstataii havi unu grupon G, ni havas kreskantan vicon de grupoj (G, )nen,
¢iu grupo garnita per probablo P,, kaj se t = t(n) estas bone elektita tempo kiu dependas
je n (kaj eventuale je aliaj parametroj), ni strebigemos n al infinito ene de niaj sumoj, por
tiel obteni konvergon al eksplicita formulo kiu pruvos kutofon ati donos limesan profilon.
La ideo de la sekva lemo estas lokalizi finian aron de neredukteblaj reprezentoj kiuj havos
plejparton de la maso (asimptote), por povi aproksimi, uniforme je n, la sumon sur ¢iuj
neredukteblaj reprezentoj per finia sumo, kaj poste ebli preni la limeson je n en la finiaj
sumoj.

ke por ¢iu o, P(a) estas homotetio, kun rilato s, =

d, (P, U duS,, tch(g
( Z >

QGG GG*

Lemo 2.1. (Aproksimaja lemo) Estu G finia grupo, P probablo sur G konstanta sur
¢iu konjugklaso, kaj S C G*. Tiam :

d, (P*t Z

gGG

Z de ‘Sa’

ozEG’*\S

stcha ‘

a€sS




Pruvo Uzante ke ’\a! — \b[‘ < |a — b kaj per triangulaj neegalajoj,

> sG]

a€esS

. 1
dl(Pt,U)—l—G’Z
geG
1
< —
_IGIZ

> dast,ch®(g)
9€G aeG\S

ST D dalsol (o)

9€G aeG\S

= 3 dalsal' g Sl (0)]. (+)

acG\S geG

Nun, por &u nereduktebla karaktero «, per la neegalajo de Cauchy-Schwarz kaj karaktera

ortonormeco,
1 (03 1 [0
57 e (g)] < _]G|\/|G|§ b (g)* = 1.

geG geG

Injektante en (x), tio konkludas la pruvon.

3 La simetria grupo kaj giaj reprezentoj

3.1 Hoklonga formulo

Ni rememorigu kelkajn rezultojn el la teorio de la reprezentoj de la simetria grupo, re-
prezentoj kiujn ni nature indeksos per entjeraj dispartigoj, notaciitaj A. En diagramo
asociita al dispartigo, la hoklongo de iu ¢elo estas la nombro de ¢eloj situantaj supre ati
dekstre de nia ¢elo. Ni notacios équ(\) la produkton de la hoklongoj de la dispartigo A.
Ekzemple, jen la dispartigo A = (7,3,2,1,1) de la entjero 14 kaj giaj hoklongoj :

1
2
411
6 3|1
11816 (4 13]2]1

En tiu kazo, ni havas :
équ(7,3,2,1,1) = 11x8x6x(4x3x2x1)x(6x3x1x4x1x2x1) = 11x8x6x4!xéqu(3,2,1,1).
Ni nun rememorigos la hoklongan formulo, kies pruvo troveblas en la ¢apitro 3 de [10].

Propozicio 3.1. (Hoklonga formulo) Se A estas dispartigo de iu entjero n, tiam d) =

éqz—é)\)‘ ’ 7) S (?)d()‘%)\dy)



Se A = (A1, Ag, A3, ...) estas dispartigo, ni notacios A* la tranéitan dispartigon (Aa, Az, A4, ...),
en kiu la plej longa linio estis tranc¢ita. Ekzemple, se A = (n—7,3,2,1,1), A* = (3,2,1,1)
kaj tiukaze ni havas kiam n — oo,

g — n! 1 n! ) 7 L0 1
A =T+ —=8+2)(n—9+1)(n—10)léqu(\*)  (n— 7)léqu(\¥) n n?) )’
Tio facile generaligas por doni la sekvan asimptotan formulon :

Propozicio 3.2. (Asimptota hoklonga formulo) Estu j > 1 kaj Ao, A3, ... fiksitaj
entjeroj tiaj ke Ay + A3 + ... = 7. Tiam, kiam n — oo,

n ] 1

Pruvo Estun € N*kaj A\ = A\(n) = (n — j, A\, A3, ...). Tiam, kiam n — oo, notaciante
M\ la konjugitan dispartigon de la dispartigo \* = (A2, Az, ..,
n! 1
n—j+ X )n—j7—1+X)..(n—2j+1+X)equ(Ag, A3, ...)
B n! n—j n—j—1 n—27+1
(n=glequ(heg, A, )n—F+ A\ n—7 -1+ n—2j+1+X\

B n! Ay 1 \y 1

— (n=j)lequ(de, Ay, ) (1 Tt (ﬁ» (1 T O (ﬁ>>
_(n _J 1

(o (-2 0(2)

Rimarko 3.3. Ni fakte nur bezonos la ekvivalenton, sed la termo kun —% ebligas akiri
pli bonan intuon pri la karakteraj rilatoj prezentotaj en la sekva subsekcio.

d(n—j,kz,kzsr--) = (

3.2 Karakteraj rilatoj

Estu 7 2-ciklo. Ni difinas, kiel en [3] la karakteran rilaton r(\) = %A(T). Eblas doni diver-
sajn eksplicitajn formulojn por tiu objekto, inter kiuj la sekvan, simetrian, kiu elsekvas
el la lemo 7.14 en [10].

Se A = (A1, Ag, ..., \,) estas dispartigo de la entjero n, tiam ni havas :

-5 0)-)

La modifita karaktera rilato, difinita en la sekcio 2, skribigas s, = % + ”T_lr()\) kaj
ni enkalkulas ke ni elektas la identecon kun probablo 1/n. La superbaroj de la sekva
propozicio elvenas el [7].

Propozicio 3.4. Se )\ estas dispartigo de la entjero n, tiam

A A
<2 kaj o fr(V] < 2
n n



Se plie A\; > 7, tiam

2+ 1)(n— A
o<1 2t D)
n
Ni ankati bezonos asimptotan disvolvigon de sy, facile akireblan dank’ al la eksplicita
formulo de 7(\) : Se j € N* kaj Ay > A3 > ... > A, estas pozitivaj entjeroj tiaj ke
Ay + ... + A\, = 7, tiam, kiam n — oo,

r(n—j,)\g,...,)\r):é((n;j) +0(1)) :1—%+0($>,

S>\=1—2—j—|—0<i2).

n n

Rimarko 3.5. En la generala kazo, por diveni kutofon, ni deziras trovi ¢ = ¢(n) por kiu
dy |s4]" = 0(1) kiam n — oo, por la reprezentoj o kiuj havas la plej grandan mason. En
la kazo de la simetria grupo, ¢ar dy ~ n’, ni volas trovi t tia ke |3>\|t ~ n~’. Ekzemple,
por la hazardaj 2-cikloj, estas tre nature antatvidi kutofon je %n log(n), el la formulo de

oL .
B Q_J)inog(n) ~ni
n

kaj do

Sy, car (1

3.3 Transigo de maso en la grafeo de Young

Estos praktike uzi la formalismon de la grafeo de Young por iuj kalkuloj. Ni tie studos,
en la grafeo de Young, transigon de mezuro de unu linio al la sekva, kiu povas esti indukte
etendita al pluraj linioj. Ni skribos A - m por iu m > 1 por indiki ke \ estas dispartigo
de la entjero m. Ni ankaii skribos A ' A se A Fm kaj A+ m+ 1 por diri ke la diagramo
de A obtenigas el la diagramo de A per aldono de unu ¢elo. Ni fiksu entjeron 7 > 1. Ni
rememoras la transigan formulon por la dimensio de diagramoj, formulo kiu troveblas
en [l 1] at [I0] : se ni fiksas A | j, tiam ni havas la sekvan transigon, kiu povas esti
sendepende interesa :
Z dy = (j + 1)dx.

A XA

Estu j entjero kaj (7x)a; vico de reeloj. Ni vastigas tiun linion al la sekva, j + 1 tiel,
sekvante la edgojn de la grafeo : se A+ j+ 1, ni metas v, = Z/\/‘A ~vx. Tiam ni havas la
transigon :

Propozicio 3.6.

D mda=(G+1))

Abj+1 AFj



Pruvo

> mda= > (Z m)dA

Abj+1 AFj+1 \X: A A

=> > Liamda

A-j AFj+1

:Z%\ Z dp

i A ASA

= (G+1)D_

A-j

3.4 Permutoj generale ne havas nur mallongajn ciklojn
Ni metas, por n € N* kaj 1 < 5 <mn,

S,,; = {0 € 6, : ¢iyj cikloj de o havas longon < j}.
Ni pruvu ke se j fiksitas, &,, ; estas asimptote multe pli malgranda ol G,,.

Propozicio 3.7. Estu j > 2 fiksita entjero. Tiam por n sufi¢e granda,

16, ) —nlog(n)
log < : < 5 ,
|G| T(5)

kie T(j) =142+ ... + .

Pruvo Ni povas vidi ke en &,, ;, estas maksimume (n+ 1)’ konjugklasoj, ¢ar klaso estas
determinita per la nombro de fiksaj punktoj, de 2-cikloj,..., de j-cikloj de iu reprezentanto,
¢iuj necese inter 0 kaj n. Nisuperbaru la kardinalon de la konjugklasoj. Estun > j granda
entjero, p = ({1, ..., itr) dispartigo de la entjero n tia ke py < j kaj pu, > 1, kaj C, la
asociita konjugklaso. Tiam, se k, almontras la nombron de y; egalaj al ¢, ni havas por n
sufice granda :

c n!
Cul = 2k23ks__jkiky kgl k1 (n — 2ky — 3ks — .. — jk;)!
n!
<
_ ( n )(2k2)! (Jk;)!
(2]{52,,]]@,(71—2]{?2——]]{])) k’g' k‘]' ‘

(2k2)!  (Gk;)!

<( n
S\ m) TR TR
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Aldone, tiu lasta produkto estas pli granda se la k; pligrandigas, do ni povas supozi sen
limigo de generaleco ke 2ky + ... + jk; > n — 1. Tiam, iu el la k; necese havas kardinalon

pli grandan ol 2+§:.1.+j = T’(‘Jil. Car cetere (2k,)!...(jk;)! < n!, ni obtenas :

n!

( n—1 >|.
T(G)-1)°

Cul < 5"

Fine, por n sufice granda,

Gal

t.e.

log (”66””"‘) < jlog(n + 1) + nlog(j) — log ((#_11)) ~ _;(1;);@'

Car T(j) — 1 < T(j), tio pruvas la deziritan superbaron.

Rimarko 3.8. Tiu superbaro aparte pruvas ke la rilato ‘IGMI‘ strebas al 0, e¢ obligita per
ajna potenca funkcio, ati polinomo. Estas tio kion ni uzos poste. La kazo 7 = 1, kiun ni
ne traktis, estas triviala ¢ar |G, ;| = 1.

Aldone, se ni superbarus pli sagace, ni povus montri ke k; ~ % maksimumigas la pezajn
J

termojn de la konjugklasa kardinalo, kaj do ke log(|&,, ;|) ~ (1 - %) nlog(n).

3.5 Superbaro de la nombro de ¢-cikloj

Estu, por ¢iu permuto o € G,, kaj entjero ¢ € N*, N (o) = Nén)(a) la nombro de ¢-cikloj
en la cikla faktorigo de o. Ni rememorigu la bone konatan legon de la nombro de fiksaj
punktoj de hazarda permuto’

@~

17Zm
: N = — m < n.
P(oc € &,,: Ni(0) mz m<n

Ni aparte deduktas ke por ¢iu 0 < m < n, P(oc € &,,: Ni(0) =m) <
tiun superbaron al la nombro de ¢-cikloj.

. Ni generaligu

Propozicio 3.9. Estu ¢, m € N*, tiam

1
P(O’ S Gn : Nq(0'> = m) S W
®Por m = 0, ni alplikas la inklud-ekskludan principon al | J;_, F}, kie F; = {0 € &, : (i) = i}, kaj
poste ni generaligas al ajna m.

11



Pruvo Kiel en la antatia paragrafo, se j; estas dispartigo de la entjero n, k, almontras
la nombron de p; egalaj al q.

P(oc € &, : Ny(o) =m)

1
:m Z |Cu|

ukn
kg=m
r=1 p=(p1,-..ur>1)Fn CAAC A 2 3 r)t
qg=m
T pm g 1) F g e TR R 2 3 — .. )]
kg =0
< — Z Z 1
=~ mm' 2k23k3...rker!kg!...k,,!(n - 2]{2 - 3]{}3 — ... 7’]{,‘7.)!
r=1 p=(p1, 0 pir>1) Fn—gm
1
1
<—
— ¢™m!

4 Pruvo de la teoremo 1.1

Por tiu tuta sekcio, ni fiksas ¢ € R. Ni rememorigas ke k = k(n,c) = |inlog(n) + cn|.

4.1 Superbaro de la ekarto

Tiu superbaro similas al la superbaro de la sumo kiu aperas en 7] post apliki la superbaran
lemon de Diaconis. Tamen, ¢ar ni volas pli precizan rezulton, ni devas solvi kelkajn pliajn
teknikajn malfacilajojn, interalie pro tio ke ¢ povas esti negativa.

Ni povas observi ke la reprezentoj de la simetria grupo kiuj havas grandan pezon en

la sumo
di (PR, U,,) |6 | > Z dyskch (o)

7€6n \e6,

respondas al dispartigoj kiuj havas tre longan unuan linion. Ni do nature trancos lai ;.
Ni metu, por ¢iu M € N* kaj entjero n sufi¢e granda,

SM(n):{)\Gé\n*:)\lzn—M}.

Latu la lemo 2.1, por é&u M > 1,

W (ER) ~ j

ceS,

Z d)\|S)\’k.

)\66/5; s <n—M

> dasieh (o)

AES N (n)

12



Ni datire devas montri ke la dekstrajo de tiu neegalajo strebas al 0 uniforme je n kiam
M — oo, kaj estimi la duan termon de la maldekstrajo. Ni komence superbaru la
dekstrajon.

Lemo 4.1. (Superbaro de la restoj)
Por ¢iu € > 0 ekzistas M = M (c,¢) > 1 kaj ng = no(M) € N tiaj ke se n > ng, tiam

Z d)\|8/\|k S €.

M<n—M
Pruvo Ni rememorigas ke s, = % + ”T_lr()\). Observu ke se A estas dispartigo de
n tia ke r(A) > 0, tlam r(\) = —r(\) kaj do sy = |sx| > |sy|. Ni unue superbaru

> a<n_1 x |sx|" trancante la sumon ere. Notu ke A\; = n respondas al r(\) = 1, t.e. al
A = (n), la triviala reprezento, kiu malaperis kiam ni aplikis la transformon de Fourier.
Same, 7(\) = —1 respondas al A = (1").

Z dy |s\|" = dmy ‘8(1n)‘k + Z dy |sx|" + Z dy |sx|" + Z dy |sx|"
r(A)<1

—1<r(N)<-2 —2<r(V)<2 2<r(N)<1

=51+ S+ S5+ Sy

Ni superbaru tiujn diversajn erojn aparte. La unua estas la plej facila :

9 L%n log(n) +an
Sl = (1 — —) = 0(1),

n
3 k ) 3 k 3 %nlog(n)-{-cn
S3 < -] < -] <nl'(-= =
ek R
*2<r()\)<2 S,

2 F 2(1 6—20

2<r(N)<1
kie ni uzis en la superbaro de Sy ke |s| < 1. Se ni sukcesas montri ke Sy estas barita (je
n), tiam ni povos konkludi ke >° ), dx |5x|" esta barita (je n). Ni superbaros sumon

iom pli grandan ol Sy, nome ), <r(n<1 D |s A\k. Ni komencu per eta superbaro kiu utilos
en la sekvo. Se 1 < j < n, ni havas

ni2i/?

dez()dﬁ_()\/ZP Zd%g—\/2ﬂ_]'< T (%)

A1=n—j A*g A*j A*g

kie la du unuaj linioj elsekvas el la propozicio 3.1 kaj el la neegalajo de Cauchy-Schwarz,
kaj la antatilasta neegalajo venas el la fakto ke ¢iu dispartigo de entjero j povas esti vidita
kiel unu el la 2/ subaroj de la aro kun j elementoj. Ni do havas, laii la propozicio 3.4
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(notu ke 7(\) > 0 implicas ke s(\) > 0)

Z d)\SA

0<r(AN)<1
55 a
7=1 A\i=n—
0<'r()\)<1
Ln/lOOOJ n—1 k
2j(n—j+1)\"
<Y (T a) (-2 8 (T a)(-
j=1 A1=n—j =|n/1000]+ A1=n—j
:A1+A2.

Ni superbaru A;. Ni havas, uzante (xx) kaj 1 + z < expx,

ISR i (2= g+ 1)\
s U e
]:
|n/1000]
%6jlog(n) M( nlog(n)+cn>
= 4 i
j=1
|n,/1000| 9 '
_ 272 rogn)—i(1-=1 ) log(n)+2¢)
\/_|6 €
— 7!
7=1
|n/1000] _
- f/]_/_Qe%cej(jl)“’g(’:}“{
— 7!
7=1

Estu aj(n) la enhavo de la sumo en la dekstrajo, kaj ni rimarku ke

log(2) _
aj+1(n> e 2 2 ij

aj(n) — Vj+1
Kiel funkcio de j kiam n fiksitas, gi malkreskas gis j = W kaj kreskas poste. Se

la unua kaj lasta rilatoj estas strikte malpli grandaj ol 1, tiam ni havos subgeometrian

sumon, kiu do estos barita. La lasta rilato, ¢e 1555, Valoras

L (2) 2 1
v/ 1000e =% 2C"'10007711000 2 — 5 (.

n—oo

Por la unua rilato, ni devas atenti iom pli. Ce j = 1, la rilato povas esti multe pli granda
ol 1, des pli ke ¢ estas malgranda (t.e. negativa kun granda modulo). Ni do devos tranéi
lastafoje, kaj konsideri la sumon ekde tatga M, dependa je c sed ne je n. Tiel, kvankam
la konvergo estas rapida en la kazo en kiu ¢ pozitivas, kazo jam traktita de Diaconis kaj
Shahshahani, se c estas tre negativa, necesos konsideri multegajn termojn kaj la konvergo
estos multe pli malrapida. Estu M tia ke

6%726 1
—— < -,
M+1 4

14



kaj n tiom granda, ke
2M10g(n)+20

<2,

aj+1(n)

kaj ke la rilato o) ¢e 7 = n/1000 estu malpli granda ol 1/2. Tiam, éar ¢iuj rilatoj
J

ekde j = M estas malpli grandaj ol 1/2, ni havas :

001 i
3 o)< S ot 3 oo 31 T T

J=1

—2Mc

Tiel, ¢ar ¢ € R fiksitas, A; estas barita uniforme je n. Ni ekzorgu pri A,, estos pli facile
kaj agrable.
Ni observas ke por ¢iu j > 0, j7 < 7137 kaj do, per (xx),

ni6ir?

Z d’\gjjT'

A1=n—j

Estu j inter n/1000 kaj n — 1. Tiam

ni6i/? j k B niGi/? Klog(1-2)
g \l7n) Tl T
J J

o (i+is)

2n2
= ji/2 ¢
i /9
”75/]2/ ~(1og(m)+) (i 335
]j

= 63/26510g(7>@_c<]+24?06)e 1 1067“0g( n)
< 6j/2€% log(1000) |c‘<3+2 106)6 4 106n10g( n)

log(6 n
< en%en log(lOOO)e\c\(n—‘rm)e—mnlog(n)

6Kn—K’nlog(n)

I

kie K estas reela konstanto kaj K’ estas konstanto strikte pozitiva. Tiel,

Ag < neKn—K’nlog(n) 0.

n—o0

Nun eblas konkludi, uzante la superbarojn de la pruvo por A;.
log(2) o,

Estu € > 0. Estu M = M(c,e) > 1 tia ke % < 1 kaj 2%6_2]\40 < e. Tiam por n
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sufice granda,

n,/1000
Z d)\‘S)\| <Sl+52+53—|— Z (I] +A2
M<n—M =M

4.2 Lemo de polinoma konvergo
Ni nun estimu la ¢efan termon.
Lemo 4.2. Estu ¢ € N*. Tiam, kiam n — oo,

%Z S Y dskeh(o)| =

€y j=1 Ai=n—j

14

Z Z e T (Fix( >>\+o<1>,

0'6671, =1

i <J — Z> 1)

=0

kie ni rememorigas ke

Ni montru unuatempe kiel la polinomoj 77, slosil-elemento de la pruvo, aperas nature.

Lemo 4.3. Estu j € N* fiksita entjero, kaj ¢ € &,, permuto kiu havas almenati unu
ciklon pli longan ol j (t.e. o € 6,\&,,;). Tiam

% Y dech o) = T(Fix(0)).

A€, : Ai=n—j

Pruvo de la lemo 4.3 Tiu pruvo estas kombinatorika kaj forte bazigas sur la formulo
de Murnagham-Nakayama. Ni unue konsideru ¢ € &,\&,; kiel argumenton en ch*(o)
kaj rememorigu ke por ¢iu permuto o kaj ¢ € N*, N, (o) estas la nombro de ¢-cikloj en la
cikla faktorigo de 0. Ekzemple, se A = (n —4,1,1,1,1) kaj o havas ciklon pli longan ol
4, ni havas lat la formulo de Murnagham-Nakayama, kaj skribante V; anstatai N;(o),

cho) = (T) + N3N, + (]\52) —N,— ((Zl) — NoNy + Ng) + ((ng) - N2> — N +1.

Ni povas observi ke ch*(o) estas polinomo en Ny(o) = Fix(c), Ny(0), ..., N;(0). La 8losila
observajo estas ke ni povas ¢ion kalkuli kiam ni prenas la sumon kun \; = j konstanta,

Ni povus preni o € 6,\&,, j_1.
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kaj ke nia polinomo, kiu apriore havas j argumentojn, fakte estas nur unuargumenta
polinomo, en Ni(c), la nombro de fiksaj punktoj de . Tio venas el la orteco de iuj
karakteroj kaj de la transigo de maso (propozicio 3.6), kiuj igos ¢iujn aliajn termojn
internuligi. Ni detalu iom pli.

Por la polinoma algebro C [z1, 2, ...], ni ne uzos la kanonan bazon generitan per la zf , sed

tiun generitan de la (’ZF), pli bone adaptitan tie.

Estu o € 6,\&,,;. Se A estas dispartigo de n tia ke A\; = n — j, tiam la koeficiento
de (N 1j(‘7)) en ch*(o) estas nature la nombro de manieroj plenigi la diagramon de Young
de \* per ¢iuj entjeroj inter 1 kaj j, kun linia kaj kolumna kresko, t.e. la nombro de
standardaj tableloj de A\*, kiu valoras dy- = ch* (Id).

Pli generale se j, ..., j, € N estas tiaj ke j; + 2j2 + ... + rj, = j, tiam la koeficiento de
(N1(0)> (Nz(a)) <Nr(0)>
jl j2 jr

ch (rir . 202 1),

Tiel, pro karaktera orteco, la koeficiento de (N 3.5")) (Ni.i")) (NEEU)) en la sumo

> dych(o)

)\Eé\n s A1=n—j

en ch?(o) estas

estas
Z d)\*ChA* (Tjr’m’QjQ’ljl) _ Z Ch)‘*([d)ch/\* (rjr’m’sz’ljl) =0.
Aeé\n s A1=n—j /\Gé\n s A1=n—j

Per transigo de maso, ni ankati povas observi ke por 1 < j’ < j;, se o havas almenai j’
fiksitaj punktoj (se gi havas malpli, la koeficiento nulas), la koeficiento de

) C2)-050)

Z dy-ch* (o)

)\Eé:z P A1=n—j

en la sumo

valoras (—1)7" foje j(j — 1)...( — j' + 1) la koeficienton de

(57)-05)

> dy-ch™ (o),
PN

gt A =n—j+j’

n—j

en la sumo

kie ¢’ havas j' fiksitaj punktoj malpli ol o, kaj sammulte da i-cikloj por ¢iu i > 2,
koeficiento kiu nulas krom se j, = ... = 7, = 0, kazo en kiu gi valoras 1. Fine, ni ja
montris ke

! ST dyd?(o) = (NI@> - <N1(U)) +% @1_(02)) R T (Fix(c)).

gt , J j—1 J!
AEG, : Ai=n—j
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Pruvo de la lemo 4.2 Uzante ke ‘]a\ - ]b|‘ < |a — b| kaj la triangulan neegalajon,

Z Z > dysheh(o)

S e s >>H

UEGn Jj=1 A\i=n—j T oeB, ! j=1
V4
<L Y[S ¥ dtaro) - Yo )
€6, ' =1 Ai=n—j j=1
y4
1 e s
S ( > dxs’;ch*w)) — e Tj(FIX(cr))‘-
ce6, j=1 A1=n—j

Ni nun duere tranéu la sumon sur &,, lat &, kaj 6,\6,,/, kaj superbaru ¢iu el tiuj
du sumoj aparte. Ni komencu per la sumo sur &, . Car en nia sumo 0 < sy < 1 kaj
ch* o) < dj,

sy

O'EGn’g 7=1

¢
LSS S (k)] + e T Fix(o))

" 0€6, ¢ j=1 \i=n—j

;! S5 Y (@ 4+ e+ 1)

0€6, ¢ j=1 Mi=n—j

iv > Z > ((( ) A)2+€2jc(€+1)n€>

F0€6, j=1 Mi=n—j

Z dyskch? (o) — e %°T;(Fix(o))

A1=n—j

IA
|

IA
|

IA
|

20 S g

< Kl c)n
S|

= o(1),

n n’ -
uzante ke ( ,)d)\* < 7d,\* <nd <n'
J J:

kie K (¢, c) estas konstanto kiu nur dependas je | kaj c. Ni ektraktu la duan sumon, kiun
ni reskribos uzante la lemon 4.3:

¢
% Z Z ( Z d)\s]f\chA(a)) — e ¥°T;(Fix(0))

L 0€GN\Gpy J=11 \Ni=n—j

:% 3 ZZ: 3 (d,\s’i—e_%cci') ch* (o)

’ 0€6,\6p ¢ J=1"'A1=n—j

Ly vy

.UGGn\GnZJ 1>\1 n— .7

dysh — e’QJC ‘ hA ‘

Ni observu ke



por ¢iu 1 < j < /lkajéiudg > A3 > ... >\, >1tiaj ke Ay + ... + A\, = j. (Notu ke estas
finia nombro de tiaj termoj.) Ni tranc¢u la dekstrajon lai ¢u max(Ny (o), ..., Ny(0)) estas
pli ai malpli granda ol na.

Unuaflanke,

1 E
nl 2 2 2
0’66’”\6"7@ j=1 Ai=n—
max(Ny (o),..., Ny(o)) < nl/(20)

1\ 1 ‘ ,
_O(n> = > Z Z K (¢, ¢) max(Ni(0), ..., Ny(o))

r€Gm\Gr ¢ =1 A1=n—j
max(Ny(o),..., Ny(o)) < n1/(26)

l
1\ 1
=0((=)|— E E:
n) n!
UGGW\GTL,Z :
max(N1(o),...,Ng(o)) <nl/(26)

_2jc d)\*

o }ch (J)|

Duaflanke,

1 ¢
D DR Z
UE@n\Gn’[ ) Jj=1 Ai=n—

max(Ny (0),..., Ny(o))>n2t

:% 3

0'66”\6”’[

—2 c
d)\SA J

WMN

; () (¢, ¢) max(Ny (o), ..., No(0))"

1

max(Ny (0),..., Ny(o))>n2t

<P(o € &, : max(Ny(0),..., Ny(0)) > n%@)O (l) O (n")

Zi: og€6,:No )>nzz>o(%>o(nf)

IN

1
7 n

1
= ( > @) (nz) lat la propozicio 3.9
o(1).

4.3 Polinomoj kun alta grado estas neglektindaj

Lemo 4.4. Estu € > 0. Ekzistas My = My(e, ¢) tia ke por éiu M > M, kaj n € N¥,

M
% DD e VT (Fix(o)| — Z

C €6, j=1 GEGn

Ze 2 (Fix( ))‘ <

7=1
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Pruvo Estu M,n € N*. Tiam ni havas, uzante denove ke }|a| - ]b\‘ <l|a—1],

M o0
1 o ] 1 o
= 2D T (Fix(o))| = — Y | D e Tj(le(g))H
0€6, j=1 C €6, j=1
1 > 4
LMD ezJCTj(Fix(o—))’
n: 0€G, ' j=M+1
= Z]P 0€6,:Ni(o Z e~ 2T (r
r=0 j=M+1
Z rl Z e e |T5(r ankorati pro la propozicio 3.9.
r=0 " j=M+1

Ni nun observu ke se r > 7,

iO(J—Z)

<> (,0 )<

()53

1=

kaj se r < 7,
1 1</ r \(=1) 1 I .
o T = 1 ('—z’)(z") G—r) (—z) i)
' g =Y ' IS N ((5)1)

Ni do konkludas ke

IR

= T j=M+1
_ Z —2)62 | + Z Z —2jC|T ‘
Jj=M+1 j=M+1r= e !
i e—2ic J 0 00
S D BCIED DED D
Jj=M+1 ((%)') r=0 j—M—H r—j+1
(o]
< Z 2]+1 Z Z 2r|c|2r
Jj=M+1 ((%)') Jj= M+lr—j+1 ’

kiam M — oo.
Antaii ol trakti la lastan aproksimajon, ni reskribu la nefinian sumon kiu estas en la
absolutaj valoroj. Ni metu

foizrse© (I4+e )" —1.
Propozicio 4.5.

Estu N € N. Tiam
Ze—Qch fc( )
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Pruvo Suficas sangi variablojn kaj intersangi la du sumojn :

o0

—2jc - —2jc (__1)1
> VTN ZZ j— ) i

7j=1 1=0

8
i
i

-1

(

4.4 Konkludo de la pruvo

Lemo 4.6. Kiam n — oo, ni havas :
1

DD

oeG,

kie Poiss(1) almontras la legon de Poisson kun parametro 1.

fo (N(0)) | == E|f. (Poiss(1)].

Pruvo Car faktorialoj kreskas multe pli rapide ol eksponencialoj, kaj do ol f., ni havas
kiam n — oo,

- - (Z( g ) 12 >|‘

I
M:
3|
s/\
|
hE
S
-
=
=
n
WE
=

Ni nun estas pretaj estimi ¢iujn niajn estimojn.

Pruvo de la teoremo 1.1 Estu e > 0 kaj M, ng tiaj ke por n > ng, ¢iuj aproksimajoj
estu validaj je e. Estu n > ny.
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Laii la lemoj 2.1 kaj 4.1,

dy (PR, U,) — —

’ O’EGn

Z dyshch? (o)

A1>n—M

Lait la lemo 4.2,

M
D 2| X o) - 5 3SR <
o€y ' M1 >n—M ceG, ' j=1
Lait la lemo 4.4,
| M
w2 |2 RN ”’ - LY e <o
ceG, ' j=1 ce6, ! j=1

Lat la lemo 4.6,

1
Ez SE.

’ O’GGn

Zercpj(Nl(o—))’ — E|f.(Poiss(1))]

j=1

Konsekvence, per triangulaj neegalajoj,

di (P*,U,) — E|f.(Poiss(1))|| < 4e.

Tiel, ni pruvis ke por ¢iu ¢ € R,
d; (P*,U,) —— E|f.(Poiss(1))].
n—o0

Por konkludi, ni reskribu tiun ekspekton lai la natura formo de la eldiro :

E | f.(Poiss(1))|
_ ie_l —e~2¢ (1 + f2c)r 1
= 2.5 e e

0o <61+5_2c>1 el
= ZO T (1+6_26) — Tlr

= d; (Poiss (1 + e %) , Poiss(1)) ,

kaj tio kompletas la pruvon de la teoremo 1.1.
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miksotemojn kaj kiu tre bone zorgis pri mi dum mia magistra tezo. Mi 8atus danki ankat
Nathanaél Berestycki pro lia gastamo kiam li invitis min al la universitato de Vieno, kaj

pro liaj atentaj relegoj kaj multnombraj sugestoj.

Mi Satus aldone danki miajn amikojn Thurian Lefort pro lia relego kaj trovo multajn
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la esperanta versio. Fine, mi dankegas mian eksprofesoron de esperanto Jesper Jacobsen,
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